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1 Means and predictors

Given some data {yi,...,yn} we could calculate a mean § = (1/n) > ", y; as a single quantity that

summarizes the n data points. i is an optimal predictor that minimizes mean squared error:
_ . n o 2
y = argmin . wi—a)
Now if we have data on two variables for the same units {y;, z;};_;, we can get a better predictor

of y using the additional information in x calculating the regression line 7; = a —i—gxi where

(6,/5) = arg min n (yi — a — ba;)?.
a,b i=1

More generally, if z; is a vector z; = (1,2, ..., T1;)’, we calculate the linear predictor 7; = m;B where
-~ . n 2
B = arg min Zi:l (yi — xjb)". (1)

The algebra of linear predictors First order conditions of (1) are

> i (v —=iB) = 0. @)

If Y77 @ix) is full rank (which requires n > k) there is a unique solution:

B= (Z:;l 33#“2) 1 Z:;l TiYi- (3)

We may use the compact notation X'X = Y"1 | z;2! and X'y = >, x;y; where y = (y1, ..., y») and
X = (21,0 20)".

Denoting residuals as w; = y; — x;B, from the first order conditions (2) we can immediately say

that as long as a constant term is included in z;:

1 no_ 1 n ~ .
o Zi:l u; =0, - Zi:l zj; =0 for j =2,.. k.

Therefore, the mean of the residuals is zero and the covariance between the residuals and each of the
x variables is also zero. Moreover, since 7; is a linear combination of x;, the covariance between u; and

Ui is also zero. We conclude that a linear regression decomposes y; into two orthogonal components:
Yi = Yi + Ui,
so that Var (yi) = Var (v:) + Var (@;). An R? measures the fraction of the variance of y; that is

accounted by ;:
_ Var (yi)

R? .
Var (y;)



2 Consistency and asymptotic normality of linear predictors

If our data {y;, x;};—, are a random sample from some population we can study the properties of B as

an estimator of the corresponding population quantity:
-1
B =[E(zi})] " E(ziyi), (4)

where we require that E (z;2}) has full rank.

Letting the population linear predictor error be u; = (y; — ), the estimation error is

-~ 1 n , -1 1 n
p-B= <n Zz‘:l mle) n Zi:l vitli-
Clearly, E (zju;) = 0, since § solves the first-order conditions E [z; (y; — z;8)] = 0. By Slutsky’s

theorem and the law of large numbers:

1
plim (B — ﬁ) = ( plim 1 ijl xzx;> plim 1 ijl ziu; = [E (ziz])] 1B (zsu;) = 0. (5)

n—00 (n—>oo n

Therefore, E is a consistent estimator of j.

Moreover, because of the central limit theorem

1 n d
ﬁ Zi:l TyU; — N (0, V)
where V = F (u?azlas;) In addition, using Cramér’s theorem we can assert that
Vi (B-8) %N (0,w) (6)

where

E (ufzix}) [E (zi})] (7)

and also for individual coefficients:
Vi (B = ;) 5 N (0,wy) (8)

where wj; is the j-th diagonal element of W.

Asymptotic standard errors and confidence intervals A consistent estimator of W is:

T 1 n ’ 1 LS S 1 n / -
W = <n Zi:l xm,) <n Zi:l wiwi | | Zz’:l x;T, . (9)

The quantity /w;;/n is called an asymptotic standard error of Bj, or simply a standard error.
It is an approximate standard deviation of Bj in a large sample, and it is used as a measure of the

precision of an estimate.



Due to Cramér’s theorem:

B li 4 pr o). (10)
Vwjj/n
The use of this statement is in calculating approximate confidence intervals. A 95% large sample

confidence interval is:
<Bj — 1.96\/1@3-/71, Bj + 1.96\/71}”'/71) . (11)

3 Classical regression model

A linear predictor is the best linear approximation to the conditional mean of y given x in the sense:
. 2
B = argmblnE { [E (y; | zi) — xb] } . (12)

That is, 2/ minimizes the mean squared approximation errors where the mean is taken with respect
to the distribution of x. Therefore, changing the distribution of x will change the linear predictor
unless the conditional mean is linear, in which case E (y; | ;) = z}0.

IfE {[E (yi | i) — :cgﬁ]z} is not zero or close to zero, :L‘;B will not be a very informative summary
of the dependence in mean between y and x. In general, the use of a linear predictor is hard to
motivate if the conditional mean is notoriously nonlinear.

The classical regression model is a linear model that makes the following two assumptions:

E(lX) = XB (A1)
Var(y| X) = o2I,. (A2)

The first assumption (A1) asserts that E (y; | 1, ..., zn) = x}f for all 4. This assumption contains
two parts. The first one is that E (y; | z1,...,xn) = E (y; | z;); this part of the assumption will always
hold if {y;,z;};— is a random sample and is sometimes called strict exogeneity. The second part is

~

the linearity assumption F (y; | z;) = «}5. Under Al /3 is an unbiased estimator:
-~ -1
E (5 | X) = (X'X) ' X'E(y| X) =5 (13)

and therefore also (B) = [ by the law of iterated expectations.

The second assumption (A2) says that Var (y; | z1, ..., x,) = 0% and Cov (y;,y; | #1, ..., x) = 0 for
all ¢ and j. Under random sampling Var (y; | 1, ...,xzn) = Var (y; | ;) and Cov (y;,y; | 1,...,25) =0
always hold. Assumption A2 also requires that Var (y; | ;) is constant for all ; and this situation is
called homoskedasticity. The alternative situation when Var (y; | z;) may vary with z; is called het-
eroskedasticity. When the data are time series the zero covariance condition Cov (y;,y; | 1,...,2n) =0

is called lack of autocorrelation.



Under A2 the variance matrix of B given X is
Var (B | X) =02 (x'x) 7" (14)
Moreover, under A2 since E (u?z;x}) = 0®F (z;z}) the sandwich formula (7) becomes
W = o? [E (mlm;)]_l . (15)
To obtain an unbiased estimator of 62 note that under A2, letting M = I, — X (X’X) ™" X', we have
E(Wu) =E[E(WMu|X)] =E (tr[ME (v | X)]) = o*tr (M) =0 (n — k), (16)

so that an unbiased estimator of o2 is given by the degrees of freedom corrected residual variance:

L, @
= . 1
o — (17)

Sampling distributions under conditional normality Consider as a third assumption:

y| X ~N(XB,0%L). (A3)
Under A3:
BIX~N (ﬁ,a2 (X’X)_1> , (18)

so that also

B; | X ~ N (B;,0%a) (19)
where aj; is the j-th diagonal element of (X'X )_1. Moreover, conditionally and unconditionally we
have

zj = b =5, ~N(0,1). (20)

This result, which holds exactly for the normal classical regression model, also holds under homoskedas-
ticity as a large-sample approximation for linear predictors and non-normal populations, in light of
(8), (15), and Cramér’s theorem.

Heteroskedasticity-consistent standard errors Note that the validity of the large sample
results in (9), (10) and (11) does not require homoskedasticity. This is why the asymptotic standard
€rrors \/W calculated from (9) are usually called heteroskedasticity-consistent or White standard
errors, after the work of Halbert White.



Other distributional results The other key exact distributional results in this context are

PO X2_j independent of z; (21)
and
B.—B.
Lt . (22)
/U\Qajj

In addition, letting now Bj denote a subset of r coefficients and A;; the corresponding submatrix of
(X'X)™!, we have

(B, -8,) AJ;’I (Bi=8) 2 (23)

g
and
(Bj - 51‘)/1@1 (Bj - 5]') /r

82

~ Fr,(n—k)' (24)

4 Weighted least squares

~

The ordinary least squares (OLS) statistic 8 is a function of simple means of z;2} and z;y;. Under
heteroskedasticity it may make sense to consider weighted means in which observations with a smaller

variance receive a larger weight. Let us consider estimators of the form

B = (2:21 wzxzﬂf;) Z:;l Wiy, (25)

where w; are some weights. OLS is the special case in which w; = 1 for all <.

-1

Under appropriate regularity conditions
plim (B — 6) = [E (wlaczx;)] 1E (wiziu;) . (26)
Thus, in general to ensure consistency of B we need that E (w;z;u;) = 0. This result will hold if
E (u; | ;) = 0 and w; = w (z;) is a function of x; only:
E (wiziu;) = E (wixi E (u; | 2;)) =0,
but more generally 3 is not a consistent estimator of the population linear projection coefficient 3

when E (y; | z;) # z3.1

Subject to consistency, the asymptotic normality result is

vn (B — ﬂ) 4N (O, E (wixix;)]fl E (viwiza}) [EB (wzxzx;)rl) . (27)

! Actually, if z; has density f(z), % is consistent for the optimal linear predictor under an alternative probability

distribution of x; given by g () x f (z) w (z).



Asymptotic efficiency When weights are chosen to be proportional to the reciprocal of J? =

E (u? | z;), the asymptotic variance in (27) becomes

()] &

Moreover, it can be shown that for any (conformable) vector g¢:

g;

¢ [B (wizin})] " E (oFwhzal) [B (wizsa})] " g > [E (x“ig)} h g. (29)

Statement (29) says that the asymptotic variance of any linear combination of weighted LS estimates

q B is the smallest when the weights are w; o< 1/a?. To prove (29) note that?

o
E <xl§1> — E (wiwa}) [E (U?wfccix;)]il E (wiziz;) = H'E (mymj)) H (30)
9

where
1 zi
H= -1 ;o my = i .
- [E (afwfmlx;)] B (w;zxy) O Wi T;
Also note that for any g we have ¢’ [H'E (m;m}) H|q > 0.

Generalized least squares In view of (29) we can say that the estimator

= noox =z
Bars = <Zi:1 02> Zi:l - (31)

% %

is asymptotically efficient in the sense of having the smallest asymptotic variance among the class of
consistent weighted least squares estimators. BG s is a generalized least squares estimator (GLS).

In matrix notation:
~ _ -1 _
Bars = (X'Q7'X) X'y (32)

where 2 = diag (0%, ...,J%).
In a generalized classical regression model we have E (y | X) = X and Var (y | X) = Q.
The asymptotic normality result is

Vi (Bons — B) 4 N (o, (%) 1) . (33)

)

2

Usually BG s is an infeasible estimator because o7 is an unknown function of x;. In a feasible GLS

2

estimation o7 is replaced by a (parametric or nonparametric) estimated quantity. The large-sample

properties of the resulting estimator may or may not coincide with those of the infeasible GLS.

2We are using the fact that if A and B are positive definite matrices, then A — B is positive definite if and only if
B~! — A7 is positive definite.



5 Cluster-robust standard errors

Suppose the sample {y;,z;};—; consists of H groups or clusters of M}, observations each (n = M; +
... + Mp), such that observations are independent across groups but dependent within groups, H is
large and M}, is small (fixed) for all h. For convenience let us order observations by groups and use
a double-index notation (Ypm,Tpm) for h = 1,..., H(group index) and m = 1,..., M} (within group
index).

The compact notation for linear regression was y = X+wu. A similar notation for the observations

in cluster A is
Yn = XnfB + up (34)

where yn = (Yn1, - thh)', etc. Using this notation the OLS estimator is

H
B=(X'X)" X'y = <Z X;LXh> > Xhn. (35)
h=1 h=1

Note that in terms of individual observations we can write X'y = Zthl Z%Ll ThmYhm, €te.

The scaled estimation error is
- XX\ 1 &
()= (S5) LS,
B B H \/ﬁ; hUh

Applying the central limit theorem at cluster level, a consistent estimate of the variance of v H (E — B)

is given by
Xx\ 1 &, X'x\ 7!
< 7 ) HZX;LuhthXh< I ) : (36)
h=1

so that cluster-robust standard errors can be obtained as the square roots of the diagonal elements of

the covariance matrix
R H
Var (B) = (x'x)™" (Z X,’Zahagxh) (x'x)". (37)
h=1

This is the sandwich formula associated with clustering. Its rationale is as a large H approximation.
There are many applications of this tool, both with actual cluster survey designs and with other data

sets with potential group-level dependence.



6 Fixed effects

Data with a group structure are common in economics (e.g. schools and students, firms and workers,
households and their members). Panel data is a prominent special case in which a group is the set
of observations of an individual at different points in time. In such case we often use the notation
(yit, i) (i =1, ..., N;t = 1,....T;) instead of (Ynm, Tpm) (h=1,.... Hym = 1,..., My).

In a regression with fixed effects we regress yp,, on xp, and group dummy variables. Therefore, it

is a regression with group-specific intercepts:?

Ym = Th B+ an+upm  (h=1,. Him=1,..,M,), (38)
or in compact notation:

y=XB+Da+u (39)

where a = (o, ..., « H)/ and D is an n X H matrix of group dummy variables:

L1 0o ... 0
0 Lo 0

D= (40)
0 0 LH

where ¢}, is a vector of ones of order Mj,.
A fixed effects regression coefficient 3; is the predictive effect of z;pm on yp, holding the other
Thm's and the group-level effects constant. Any predictor that varies with A but not with m will be a

linear combination of the group dummies and therefore redundant in the fixed effects regression.

Formulas for partitioned regression OLS estimates of § and « in (39) solve the equations
(o o) (2)-(5) :
D'X D'D a D'y
To obtain separate expressions for B and @, we solve for @ in the second block of equations:
a=(D'p)"' D (y- XB) (42)
and insert the result in the first block to get:

B=(X'QX) ' X'Qy (43)

where Q = I — D (D'D) " D'. According to (43), 3 can be obtained as the OLS regression of § = Qy
on X = QX, where y and X are regression residuals of y and X on D, respectively. Once we have B,

a can be obtained as the OLS regression of the partial residual <y -X B) on D, in view of (42).

3Thus, in this section znm, does not include an intercept term.



Within-group estimation When D is the matrix of group dummy variables (40), ¥ and X are
arrays of the original variables in deviations from group-specific means with elements yn.,, = Ynm — Uy,
and Ty, = Tpym — Tp, Where 7, = M, Zm 1 Ynm, etc. Therefore, the fixed effects estimator B is

simply OLS of y on X in deviations from group means:

R H M, g M,
= [Z > @hm — Tn) (Thm — wh)/] S @hm —Tn) (Yhm — Tn) - (44)

h=1m=1 h=1m=1
As for the estimated fixed effects they can be obtained one by one as group averages of partial residuals:

M,

ap = i Z(yhm th5>—yh—$h5 (h=1,...H). (45)

Properties Under the assumptions of the classical regression model, namely E (y | X,D) =

XB 4 Da and Var (y | X, D) = 021, B and @ are unbiased with conditional variances given by:*

-1

Var (B | X, D) = 02 (X'QX) (46)

2
Var (@, | X,D) = XJ— + 0%, (X'QX) ' T (47)
h

If the data are a clustered random sample, as H — oo for My, fixed, we have Var (B | X, D) — 0 and
Var (ay, | X, D) — 02/My,. Therefore, 3 is consistent when H is large and M, is small but not @,
This is not surprising because @, is an average of M}, observations, so its dispersion can only vanish
as Mj increases. The lesson is that in data with a group structure some parameters may be more

estimable than others.

Cluster-robust standard errors in a regression with fixed effects Including fixed effects is
in general not a substitute for clustered standard errors. For example, a panel regression may include
both individual fixed effects and errors that are correlated over time. Since a fixed effects regression is
equivalent to a within-group regression, the clustering formula of the previous section can be applied

to the data in deviations from group means:°

Var (B) (X'QX)~ (Z Xhuhap?h) (x'Qx)™" (48)

where up, = yp, — )N(hB, and 7, and X, are the h-th blocks of ¥y = Qy and X = QX, respectively.

~ 1
3 X'X X'D ~ L
< - | X,D| =02 D'x DD andah—ah:uh—xﬁl(ﬁ—ﬁ).

’ Arellano, M. (1987): “Computing robust standard errors for within-groups estimators,” Ozford Bulletin of Economics
and Statistics, 49, 431-434.

“Note that Var




