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A Detailed proof of Proposition 1
We follow the steps outlined in the appendix of the paper.
Step 1
We want to show that for all sequences 0, = (0p, in, An) € O with (dy,, kp) 2,0, we have
LR, (0,) = LM (0,,) + op[hn(6n)], (A1)

where hy,(0) = max {1, n(1 — \,,)265, n(1 — Ay)202k2, n(1 — \y) %k}
Let [ denote the log likelihood of the observable y, hy = y(y —3) and hg = y* — 6y% + 3.

The scores and relevant higher-order derivatives with respect to § and x at the point (0,0, \,)

are
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with (Sn, Rn) between 0 and (0, ky,). Then, taking an eighth-order Taylor expansion we get
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Next, we have to show that
> APHS k= oyl (6,)]. (A3)
J+k=9

To do so, it is worth noticing that for j + k =9,
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where (A4) comes from the mean-value theorem, (A5) follows from the central limit theorem

and

[Fnl} < max{|dn], [mn} < (1= An),

while (A6) follows from

= O[(l - )‘H)ZL

j/+kl
g | 20
67 OKF

(0,0,An)

for 7'+ k" =9 and j' + k' = 10, which can be easily checked by hand. Then,

> AbHsI ek = ) {o [(1- )% + 0, <;ﬁ> +0,[(1— /\n)]} nél kk

j+k=9 J+k=9
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J+k=9 J+k=9 J+k=9
= 0p [P (0n)]

which follows from §,,, k, = 0,(1) and (1 — A,) > max{|d,|, |kn|}.



If we then use (A2) and (A3), we can show that

%LRn(Hn) =v/nd} (A1y + Vn6h Asn) + Vnk2 (Agy + Vw2 Agn )
+ \/ﬁén”n (A8n + \/ﬁén/{nAIZSn) + Op[hn (an)}v (A7)

which follows from the fact that Aj, to A3y, are Oy(1), and A4y = 0p(1) because the terms in
curly brackets are O,(1). Also,

o) = - 0= T B iy
_ % An(1 _3?6” + Ai)] 2 Van(l — A\,)288
S (= AR - (AS)Z Van(1 — An)
_ ?I%\/ﬁu — An)Onkin — % <A2n)2 Van(L = Xa)?05 57, + 0plhn(62)]  (A8)
:il/ggwln — %V;J,IU%H + 13/4510% — %VzﬂUgn + 0op[hn(0n)], (A9)
with
wln:—)\?n\/ﬁ(l—)\nﬁnlin and wgn:—%(l—)\nﬁi‘i‘%\/ﬁ(l_)\n)“i, (A10)

where in the first step we re-write (A7) as (A8). Then, letting

l[k‘hkz} B 1 oFitka]

 k1'ko! 96k 9Kk’

the result follows from

1 1 1 1 1 _1
ELLS’O} = —§E[(l[4’0])2] +Op(n~2) and ELL?A] = —iE[(Z[O’Q])Q] + Op(n™2),

(see Lemma 1 in Rotnitzky et al (2000)), and

L = B+ 0y,

which can easily be checked by hand. As for the second step, it is a simple rearrangement
of terms to go from (A8) to (A9). Therefore, the only difference in the leading terms is the

coefficient of V4, namely,

A\ An(1 = Ap 4+ 22)7°
o= (%) n-n et 2O 10,028 = 0,1, 2682] = oyl

as required.



Step 2

First, we show that h,,(05*) = O,(1). By definition, we have

LM%(#) =2 \FHgnw1+2 \/>H4nw2—‘/3w1 Vyws
1 H, 1 (Hs,\? 1 Hip\? | 1 (Hip\?
=-V - = = ’ -V, - == = ’
(o Vé\/ﬁ>+‘/3(x/ﬁ> (o) (0
Let wiM and wiM be defined as in (A10) with §, = 6LM k, = kLM and N\, = XEM | Tt is

straightforward to see that wiM = 0,(1) and wiM = O,(1) because

1 1

n_EHgyn n_§H4,n

T = Op(l) and ‘/21 = Op(l)
by the central limit theorem. Next, we have that

1 — \LMy§LM LM| _ 27”1%‘/1 A M 1
|\/ﬁ( n)an ‘_ )\LM ‘wl }_ P()a
whence
V(L= XEMYSEMGEM 0 (1), (A11)

In addition, we also have

91 — \LM LM 2
g ey 22 B iy | =
< 16 |wgM| = Oy(1).
Then by Lemma 5, y/n(1 — ALM) (kEM)? = 0,(1) and v/n(1 — AEM) (65M)* = 0,(1). Together

with (A11), we have h,(02M) = O,(1). Moreover, it holds that 6™ kLM = ¢, (1) because

Va(lrpM)? < V(g™ (1= XM) = 0,(1)
and

Va(lepM)® < Va1 = AR = 0,(1),
as desired.
Step 3

Next, we show Step 3.1: (657, k%) 20, and Step 3.2: hy, (657 kLR ALEY = 0,(1).
Step 3.1
Let lo(0) = E(o,0,) [[(9)]. Invoking Lemma 6, we have

SUPgeco

%Ln(a) - zo(a)‘ 20 (A12)



(i.e. uniform convergence). Moreover, for all € > 0, we have that

lo (0, 0, )\) > SUP62+K2>6,HGPEZO(9) (A13)

(i.e. well separated maximum), which follows from the fact that § = x = 0 is the unique
maximizer (note that (1 — ) > max{|d|,||}), lo(#) is continuous, and O is compact. Hence, we
have that (627 kER) = 0,(1) by virtue of Lemma Al in Andrews (1993).
Step 3.2

hn (027 = O,(1) follows directly from Step 3.2.1 and Step 3.2.2 below.
Step 3.2.1

We first show that n (1 — )\53)2 (551{)8 = Op(1) and n (1 — /\,QR)2 (/ﬁﬁR)4 = Op(1). By
contradiction, assume that either n (1 — )\,LZR)Q (551%)8 #O0p(1) orn (1 - )\,LLR)Q (K,,ZL’R)4 # Op(1),
so that there exists € > 0 such that for all M it holds that Pr(A4,) > € i.o., where

1 1 4 1 1 2
= {gggnt (1= 61 > arfu { et (1= (617" >

Since Hzp/+/n and Hyp/+/n are Op(1), there exists M; such that Pr(B,) > 1 — €/4 for all n,

where
H H
B = {| e < a0} o
n Vn

‘\/>
Next, let 7,(0) = LR, (0) — LM, (). Since k%%, 5L and 7, (0L%)/h(0ER) are 0,(1), with
positive £ < 1/3, we have that Pr (C,) > 1 — ¢/4 ult., where
1\2
<¢ (288) } .
LR

Let us define wy," in the same way as wa,, but with the parameters A,, x, and J,, replaced by

LR _LR LR
)\7’1 7'%71 571

<M1}.

Tn(‘gﬁR)

_ LR LR _n\'n /
Cn - {|"€n ’ < 57 |5n ‘ < 5} n { hn(GﬁR)

and , respectively. In addition, let

D= { bl = g [ (1) (62" 2t (1= N2 (k)]

E, = {n% (65}%)4 > Iz (liﬁR)2} and F, = {|w2Lf\ < |w1L§|}
Then, we can show that for all M,
Pr(A, N B, N Cy) > Pr(A,) + Pr(By,) + Pr(C,) — 2 > % io.,

where the first inequality follows from Pr(ANB) > Pr(A)+Pr(B) —1, and the second inequality
follows from the lower bounds of Pr(A,), Pr(B,) and Pr(C,,) derived above.

In addition, let M > M; /¢ and consider A, N B, N C, N Dy, N E,,. We next use Lemma 7 to
show that A, N B, NCy, N Dy, NE, C {LR(65%, kEE NLF) < 0} = 0. To do so, let us check all

the required conditions. First, notice that |Hs,/v/n| < My and |Hya,/v/n| < M are satisfied



on B,. Second, we can easily check that

M,
i > —= and [wf;] > |wg|

£

because

(1 A (ERGERY? — (1 ) ()7 (1 AER) (45
uwklit 2 1 4
{ o Tl = (ALY I3 (1 — ALR) (65R) } (A14)
( )\LR (5LR)

{ 16\w2R\+6n (1 — LR (553)4] n2(1— ARy (5ER)? (A15)

11 1 — ALR)? (sLR)®
> (3 ) na-am e MO BT g

where (A14) follows from the definition of w’, (A15) follows from the bound of AL the first

inequality of (A16) is a direct consequence of combining D, with FE,,, while the second one follows
from the definition of C),.

Then, we have

1 LRy (sLR\4
1 LR\, LRSLR 1nz(1l— A, )(5n )
‘wl | = 2 2(1 =N,k ZZ 3¢ (A17)
24M M
{21£ le LR\ (sLR\4% LR W (A18)
> gggnz (1= Ay )(5n ) > |wyyt| (i)

where (A17) follows from (A16), (A18i) follows from combining A,, with E,, and M; < M, while
(A18ii) follows from combining D,, with E,,.
Next, we check that 7, (L%)/ (wLR)2 < & thanks to

1n

3 (1-ALR)(§ERY

n3 (1= ALR)cLRSLR . >3 (1= ALR)(51RY ! (A19)
1. \LR\/sLR\4 1. \LR\(,LR
nd (1 ARkt > 20 A;‘g)(é” S, 2l Agng NE) B (AR (P2, (A20)

where (A19) follows from (A16) and £ < 1/3, and (A20) follows from the definition of E,, and
€ < 1/3. Thus, h, (0ER) = n(1 — NEB)2(5LESLE)2 and, as a result,

PO | 1 (BER) by (05R) | | (05 || 0 (1 — AE®)? (wERSET)
(wER)* | [Bn(02") (wER)* | 107 (wh)’
1\? 4
< (288) W <, (A21)

where (A21) follows from the definitions of C,, and wkf. But then, we have that LR(ALF) < 0
conditional on A, N B, NC, N D, N E, by virtue of Lemma 7, and consequently, that A, N B, N



C,ND,NE, =0.

Consider now A, N B, NC,, N D, N ES. We can use Lemma 7 again to show that A, N B, N
CnN D, NES C {LR(OE™) < 0} = 0. First, notice that |Hs,//n| < My and |Hyp/v/n| < M
are satisfied on B,,. Next, we have to check that |wf®| > M;/¢ and |[wiE| > |wlE|. To do so,

notice that

n (1= AeBY? (GERGLR)? > pa (5LR)? 3 (5LR)* 512 (1= ALR)? (A22)
1 36
20 (10 () (1— An+A2) (423)
1 LRy LIR\2 Wo | 1
< gVr (=) () =

> n2 (1 - ALR) (kER)? 36 (A24)
41

[ (- M) (k) — 2]
?7

where (A22) follows from the definition of C,,, (A23) follows from the definition of wi !t (A24)
follows from the bound of AL and (A25) follows from combining D,, with EC.

Then,

> dn (1 — ALR)? (kLR)

n

(A25)

__yLR\\LR L/ YLRy/,LR\2
|wfR — (1 >‘n ))‘n n%RLRdLR >12n2(1 )‘n )(En ) >in%(1_)\LR)(RLR)2 (AQG)
n 2 n n — 4 € 72 n n
{>M>A§1 (i), (A27)
> Jwgf (i),

where (A26) follows from (A25), (A27i) follows from combining A,, with ES, and (A27ii) follows
from combining D,, with E .
To check that r,(05%)/ (wf,fi)Q < &, let us write

20 (1 — ALY (iLF)?

n3 (1 — ALR)LRSLR| > e > nz(1 — ALR) (5ER)* (A28)
L. \LR\(,LR\2 1. VLR (sLR\%
nb - Aimegnapn] 2 2L () = M) ()
> nz(1 — ALR) (5ER)* (A29)

where (A28) follows from (A25), and (A29) follows from the definition of ES. Thus, h,(65%) =

n(1 — MNERY2(gLRSLRY2 and| consequently,

ru(@5)| _ @) (| (L= N (R0 | | o A30
(whf)* | Tha(627) (w)” " |noim | e <6 )

where the last inequality in (A30) follows from the definition of C,,. By Lemma 7, we have
LR(6E1) < 0 conditional on A, N B, N C,, N D,, N ES, and thus, A, N B, NC, N D, NES=0.



Consider now the case A, N B, N C,, N DS N F,. We can use Lemma 7 once again to show
that A, N B, N C, N DS NE, C {LROLT) < 0} = (. Noticing that |wEl| > M > M; /¢ is
satisfied by combining A,, with D¢ and F,, and that |w?| > |wl | is satisfied by F},, we have
to check that |r,, (L%)/ (wff)z | < ¢. To do so,

LR LR
i) P (A31)

max {1,n (1= XER)* (ER)*m (1= AER)? (357)" (1= AER)® (wEROER)}

X

(wh)*

o (0LR) | [max { (2880ER)?, (2whR/AER)? |

< | R ; (A32)
Fin (0:,7) (wi)
Tn(eLR) 2

- 288)° <
< [eim | 89 <€

where (A31) to (A32) follow from the definitions of D¢ and w;. By Lemma 7, we have that

LR(6ER (LR \LRY

n JY''n »’'n

conditional on A, N B, N C, N DS N F,,, and therefore A, N B, NC, N DS N F, = 0.
Finally, consider the case A, N B, N C,, N D¢ N FY, in which

ha (L) max {n (1= AERY? (GLRY® (1 — ALR)? (SERY® (1 — ALR)? (H,LLRagR)?}

(whR)® (wh)*
max { (288w )? | (4wlF)?
< {( 2)2( 1)}§124><4, (A33)
(wr)

where the first inequality in (A33) follows from the definition of D¢ and the second one from

the definition of F};. But then,

LR(OF) _ My wif  Hin 1 (0B (00"
2 = 2 LR~ '3 2~ V4 2
(wgF) Vi (whE) Vi wy; (w3,7) (wg™)
M, M, T (L) 4
<2 42— V4 212t x4 A34
SO M T T ey | (A34)
<4 -V +£<0, (A35)

where (A34) follows from the combination of A4,, with B,,, DS, FS and (A33), and (A35) follows
from the definition of C}, and V; = 24.

To summarize, we have A, N B, N C,, = (), which contradicts

™

Pr(A,NnB,NC,) > B i.o.,

as desired, and thus, n(1 — A2)2(6L17)8 = 0,(1) and n(1 — AER)2(kLEYE = O,(1).



Step 3.2.2
Next, we will show that n(1 — AEF)2(§LRGLEY2 — 0,(1), i.e. that for all € > 0, there exists
M > 1 such that Pr[n(1 — AEF)26ERGLE2 . M| < ¢ ult. To do so, notice that

ra(057) = 0p[hn (05™)] = op[max{1,n (1 — AER)* (657kER) %))

because n(1 — ALH)2(6L7)8 = 0,(1) and n(1 — A\EF)2(kLE)* = O,(1). Letting 0 < m < 1V5, we

n
have that
167, (AL

Pr LR\2 (<LR, LR\?
max{1,n (1 — A;"%)" (6, "kER)"}
In turn, given that Hs3, /v/n and Hy,/+/n are Op(1), there exists M > 1 such that for all n,

2

> 2m> << . (A36)

Pr [%ZM(?—2m)] <iand Pr 2%/4(I;[;TLZZ>Q>TnM2] <i. (A37)
We then have that Pr (!wﬂﬂ > M) is equal to
— P [{Jut] > M} 0 {LREE) > 0)]
i (25 o)
et a0 {ECR i 2o} o[ e <o)
e e {5 e = o} o i o)
2

2
LR 1H4n 1 H4n
Hs, 1 V4(w2 Vi ) 7( )
3n AN n 1 /n LY NG Lm0

<Pr [{|wff| > M}n

Vi owfit 2 2(wi,7)? 2(wi, )2
+P n (SITL;IZ) > 2m]
(wln)
<pe (ot >0 0 { a2 s g |- T ) (439
<Pr [ff/?’g 2M<‘;3—m—5§’;;]\;2> +§ ult., (A39)




where (A38) uses (A36). In addition,
H3n VE} Hzn 1 an 2
Do (B o= A~ )V A

{ Jn <2 T oV, M2 oV =
H3n Vé HZn 1 HZn 2

Y g R ’ M
{ n (2 mn 2nVy M2 : 2nVy = m
Hy, HE,
§Pr[ 3 2M<V3—2m>}—l—Pr< 4 >mM2>—i—

€, (A40)

(A39) < Pr

_{_7

<
2

where in (A40) we have used (A37).

Step 4

We now show that LR,(057) = LM2(02M) + 0,(1), that is, that for all ¢; > 0 and for all
€s > 0, there exists N such that for all n > N,

P (|LR,(05%) — LME(OFM)] < 1) > 1 — e
Letting

G = {n¥ (1= AER) (05F)", 1n% (1= AER) OERRER|, n3 (1— AER) (kER)?,

n n

n3 (1= AER) (8EM)" n% (1= ALR) 6EM M| nb (1 XER) (k)7

we know that max {G,} = Op(1), so that for ez > 0 there exists M such that for all n,

Pr(maxG, < M)>1-— %2 (A41)

Letting A = {0 € © : n? (1—-X)6t< M, n2 (1-N)k? < M, ]n% (1 =X)d0k| < M}, we can then
show

sup | LRy (0) — LM (0)| = op(1),
0cA

i.e. there exists N such that for all n > N, we have that

Pr <sup ILR,(0) — LM®(0)| < 61) >1- 2 (A42)
6cA 2

To show this, let

(Ony Kny An) € arg (671’2%)(614 |LR,(6,k,A) — LM (5, K, N)]|.

Given that n2 (1 —\y) 0% = 0p(1) and nz (1= X\y) K2 = Op(1), we have 6, k, 2 0, whence

n

sup |LRTL(57 R, )‘) - LM??(& R, )‘)‘ = |LRH(67L7 Rn, )\n) - LM:LL((STH Rn, )‘n)| = OP(1>a
(8,k,N)€A

10



where the second equality follows from (Al). Therefore, for n > N we have

Pr( W (O — LME(OEM)] < 1)
Pr ({|LR,(05") — LM;;(egMﬂ <eapn{oife Ay n{oLM e A})
({Sup |LR,(0) — LM2(0)| < 61} N{o:t e A} n {05 € A}) (A43)
feA
>Pr (Sup |LR,(6) — LM%(9)| < 61) +P ({0 e A} n{0EM € A}) — 1 (A44)
fcA
21—%2+1—%2—1:1—62, (A45)

where we have used Pr(E; N Eq) > Pr(E;) + Pr(E2) — 1 to go from (A43) to (A44), and (A41)
and (A42) to go from (A44) to (A45).

Step 5

We consider the different cases separately in Step 5.1: P = P, 1, Step 5.2: P = Py 2 and
Step 5.3: P = P,3.
Step 5.1 We have that

1 Hy, \* | 1 (Hzn)? 1 Hyp\? | 1 (Hyp)?
LMa(S )\ :—V n— T . 5 : _V n - 55 . 17 . ’
n( y Ky ) 3 <w1 Vs \/ﬁ) + Vs < \/ﬁ> 4 | wa Vi \/ﬁ + Vi \/ﬁ

where

1

B 2
wy = —5(1 — MAndk and we = A1 —A)/n (51352 — 1)\—i_)\(54> .

36

Next, let
2

We first aim to find an upper bound for LM®(#%M). In that respect, we can easily show that

1-— 1
wo1 = ( ) fﬁ and w22:—(

H2 — H?
LM (6EMy < 30 an A46
a0, < s T (A46)

Second, we aim to find a lower bound for LMZ(#EM). To do so, let A} = 1/2,

1
1 1 .
o Jomi (<) if Hap <0,
n
ot %ff;g / %Iﬁﬁ if Hy, >0,
and L
=] (i) [ (CRTR) i <o
¥ =
4sign(H37n)n_i %If%l if Hyp > 0.
It is then easy to verify that (0, k", A;) € P, with probability approaching one, whence
y i, | 1
LM? (0EM) > LME (6%, k5, = — : 1). A47

11



To verify the second equality of (A47), we can easily check by hand that

* 1 ®\ | * * 1 H37TL
wy = _5(1 - An))‘n\/ﬁénmn = Vg \/ﬁ ’

1
%\ k 1 -1 4H7n2 12 Hin \2 .
w;l (1 — )\n))‘n n(:‘i*)Q _ 31 4 (73 jﬁ) /(— Va \;ﬁ) = Op(l) if H4,n <0,
i s if Hy,, >0,
and
x 1— AR [L = X%+ (A)? .
iy =~ (PN O8] s
e if Hy, <0,
- rafﬂ_zﬁm/¢zmg{mu)ﬁH o
192 Vs \/n Vavn ) — 9 an >0,
with
1 Hyp

x ok *
Wy = Way + Wy =

+ op(1).
L4 \/ﬁ Op( )
But then, (A46) and (A47) imply that

LM H?? Z
n N
LM;LL (0n ) = TV}, + TL‘/4 + 0p(1).

Step 5.2: Recall that @y = {# : A € [1/2,1],0 € [-4,6],x = (2\ — 1)6?/3]}. Then, given
that x = (2\ — 1)6%/3, we will have
(1—=XA2X-1)

1—
wy = — 5 Vnd® and wy = (72)\))\ (—1—2X+2)?) v/ns*.

As before, we first aim to find an upper bound for LM,?(G,LLM ). In that regard, we can notice

that we < 0 for 0 € ©4 so that
1 H4n 2 1 H4n 2
-V _ - % ;
4W'mﬁ>+w<ﬁ>

1 [ Hs,\?
LME(SEM kEM NEMY < v < \;’g) + sup
woER™

1 (H3,\%2 1 [(Hy,\?
= : () 1[Hy, <0).
%(ﬁ)*m(ﬁ) Han <0

Second, we aim to find a lower bound for LM2(#LM). For that purpose, let A € (1/2,1),

1
—sign(Hgyn)Qn_% ( QH4’") b Hypn <0,

Vi /n
1
6: = L VLH\SF’" 3
e 3 I CRRV/ TR '
oo ERex-T) if Hyp 20,
and .
_1sign(Han) 3 o2
r4+ns Vs e if Hy, <0,
A5 = 2<—QH4’")ZI
n B Vi Vn
)y if Hy, > 0.

12



We can then verify that
(1= X)X 2N, - 1)

wy = — 5 Vn(oy)? = 73% + op(1),
1=\
wy= U2y oy ooy
T+ 0p(1) if Hy,, <0,
= _ 4
2\ < 72y 1 Hs , |3 .
U2 (-1 224+ 20078 | oty 6 9] = oplD) i Haw 20,
As a result,
5. Hi
LMA(OEMY > LMO(6%, k5, \5) = —2 "1 [Hyp <0 1
n(n )— n( ns B n) nV3+nV4 [ 4n < ]+0P( )a
whence
LMA(6EMY) = M3 H‘%’”1 H. 0
n n - nV3 + n‘/4 [ 47n< ]7
as desired.

Step 5.3: Recall that ©5 = {9 : A € [1/2,1],6 = 0, € [—k,R]} and Py3 = {(d,K,\) :
(6,6 — (2X —1)5%/3,\) € ©%, max{|d], ||} < 1 — \}. Exploiting the fact that § = 0, we have

1
w; =0 and wy = §>\(1 — MVnk?.

Thus,

1 H4n 2 1 H4n 2
LMY, k,\) = =V, - — ’ .
n( y ) 4<’U}2 Vs \/ﬁ> +V21<\/’71>

Next, we first aim to find an upper bound for LMZ(#5M). Tt is easy to see that wy > 0 for
LMz (6™, kM AGM) < sup

0 € O3 so that
1 Hyp\? 1<mny
~V -2 += (=
waent 4(w2 Vwﬁ) Vi \ v

1 I_I4n2
= ) 1[Hy, > 0].
V4<ﬁ> [Han >0

Second, to find a lower bound for LM&(0EM), let \¥ = 1/2 and

- {0 if Hyp <0,
n = _1 2H4,n :
4n~1 Vi if Hyp > 0.
As a result, wi = V%If%t [H4, > 0], whence

2

H
LM (0;) 2 LM (0, 5, A,) = 21 [Ha = 0]

as desired. (]
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B Detailed proof of Proposition 3

Before proceeding with the proof, we start by giving an example of sequences (dy,, K1m) — 0

and (d2m, k2m) — 0 such that

gn (51m7 Kflm) li gn (52m7 52m)
—_—— m ——-.
m—oo [/ (51m7 "‘flm) m—oo (52m7 HQm)

Note that for (§,x) — (0,0), it holds

1 L O Hiy (14 15\ Ha
— — — 5 J
VoA sy VR (365 >+ vn 2 "t oplr ()l
where
1 1
7(k,0) = max{‘gl(sé4 - §H2 , 55#@ }
Let

(61,51) = (\/% \/ﬁu) L (82, k2) = (0,0).

It is easy to see that with v — 0, we have |61 — 02| + |k1 — k2| — 0,

AL 1 8L
lim %ﬁ(él’ w1 1) _ and lim %ﬁ(%’ w2 1) _
v=0 \/V&l" (a—f\(él, K1, 1)) VnVs v—0 \/V&r (%\(52, K9, 1)) VnVy
This shows that the process Gu0K) 6 not stochastically equicontinuous.
V'V (0,k)

Next, we follow the steps of the proof outlined in the appendix of the paper.

Step 1

Lemma 1 Let R(n,7,¢) = LRE(n,7,0)— LM% (n,7,0). For all sequences of (n,,, Tn,®,) € D*

and n, 2,0, we have that

R0, T, ) = 0p (max {1,nnm2}) .

Proof. Let 0, = 6(Tn, ©n); kn = &(Tns ©n), An = A1, Tny @,,). First we show that 1 — X, 2 0.

Recall that n,, = max {|3:07 — 12|, |26nkn|} (1 — Ay), whence either (1 —\,) < /7, or
max § |—=04 — 1,%2 15 Knl| ¢ < /M (B1)
36" 82 v

Under (B1), we have

a1 2 21 2 2 Ly ? L o 2 2 2 L o
It is then easy to verify that given (B1), 1 316 62 > 0 with probability approaching 1. Therefore,

14



(B2) implies that
1\ /1 5\
= (5) + (5+)
=[0n] < 2/5VBni/%, [kn| < 27403/,

and also, that 1 — X\, < max{|d,|, |kn|} < max{25/8\/§77,1/8, 27/477711/4} because of the restriction
on Py. In sum, it holds that

1= A < max{2%/5V30,/%, 274,/ 0 /%) 2 0.
Second, a third-order Taylor expansion gives

1
§LR’rdL(Tln? Tn, (Pn) = ng(nnﬂ—m ‘Pn) - Lg(oﬂ—m (pn)
= Ln(5na Rn, An) - Ln(5n7 Rn, 1)

_ OLy(6y, ki, 1) 10%Ly (60, Finy 1) 9
—T()\n—l)+§T(An—l)
1 &Ly (6 Ky An) 5
30 00 (A — 1)°.
The first term is
0Ly, (0n, Kin,y 1) 1 1 0Lu(6p, kin, 1)
T(>\n—1)— N B VnTan(Ap — 1)
= gg(Tm @n)\/ﬁTn()‘n —1).
In turn, the second term will be
1 (10%Ly (6, in, 1) 5 1 O?1(6p, ki, 1) T 9
1 [0%1(0n, kin, 1)
2
=38 [P 2 (0, 120,y 177 (B
1
=—§Vd(m en)nTn(An = 1D? + 0p[v/nra (A = 1), (B5)

where (B3) follows from Lemma 8(8.1), and (B4) to (B5) from the information matrix equality.

Let us now turn to the third term. In view of Lemmas 8.2 and 8.5, we have

1 PL(6n, Kny An) 1 PP Koy An) 1
il e S R R LV | R =
n'n N3 T BIE O\
1
= O(Tn) + Op <\/ﬁ> N
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whence

LT LOnstns 23, 1= [0(52) 4.0, (= ) e = 17 = aplnran — 17

n N3
In sum, we have LR(0y, fin, An) = LM (8p, Kny An) + 0p (nn%) O
Step 2

Lemma 2 For (1,¢) € DL, Gd(t,0) = G, ), where G4(1,¢) is a Gaussian process with

TP?
mean 0 and covariance kernel

Kl(r, ), (7, )] = Tlﬂcov{azwn sogf(ﬂw),l]’ 35[5(7’7s0’)(§;(7’7s0’),1]}' (B6)
Proof. Here we follow Andrews (2001). By Theorem 10.2 of Pollard (1990), G4(-) = G%(-)
if (i) the domain of (7,¢) is totally bounded, (ii) the finite dimensional distributions of G%(-)
converge to those of gd ), (iii {gd n > 1} is stochastically equicontinuous.

(i) is satisfied because (7,¢) C [0,5 + R2 4 0R] x [0,1].

(ii) The process 7 10L;(6(7, @), K(T, ), 1)/ON is iid with mean 0.

Moreover,
1 ) 1
ol s [L2OC0).AER.D] s | M.k DI o (87
(T,QD)ED}W; - o\ } 5|§32,|n\§f€2,52+ﬁ2>0|7—(5 KJ) o\ ‘

To prove (B7), consider the fifth-order Taylor expansion of 0l (4, k, 1) /OX around (d, k) = (0,0)
given by

4 1+k o 67(% = o
ol (687;’ 1) _ Z '1 9 ! (?a Oal) Skl + Z %8 1(57;{" 1) 5yl
i il ONDS Ok i I 0N O
1 1 9°0(0,0,1)  ;
=hy (6 ) + h325m + Z W ONS O 0K

=921~

67(5 =~ 86
n Z 1 0°l(4, R, 1)5’HJ+ 0 l(é,/{,l)&g

i3 ONIS Ok NI (B8)
i+j=5ix1,j>1 ") &
91(0,0,1)  8°1(0,0, 1)/{ a%1(0, &, 1)%2 3
ONOK3 OOk ONOKD
Consequently
1 OL(d,k,1 9%1(0,0,1)] 2 —1_,_
5 (a)\KI )‘ < ’h4‘ + ‘h3’ + Z a)\é(szaj) ﬁ(g 1/€j 1
7(3, %) 4>i4>3,i>1,j>1 D
1 951(8,/, 1) | ~i—1_. a51(8, &, 1 80
4 Z sup ﬁ(iz/{]) 5 1I_€]_1+ _sup ( 55 ) ; (Bg)
ij=5i>1,7>1181<8,|7|<r | ©T° OA00" O Bi<alri<r| OAD0 7(3, %)
91(0,0,1)| 18°1(0,0,1) %1(6,7,1)| _ K3
+ 3 | |El[+ sup | R 5
ONOK ONOK 5|<5 |7j<r| OOk 7(0,K)
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It is then easy to check that

9%1(0,0,1)

1 0*1(0,0,1) 0°1(0,0,1)
h h — . B10
fal 1l +4>HJ;>U>1 i1 | ONOO Ok ONDK oot || <0 (BLO)
and
6 T o~
E Z sup L’f’l) (B11)
i4j=5,i>0,j>0 [0|<8,|R|<R ONDO Ok
For 62 + k2 > 0, if K = 0, /ﬂ2/max{\%54 — 1K%],30k|} = 0, otherwise
2 1 W <20 if 62 /K2 >0
r(6,K) T 1] el S ) ! < =72 g2 <52 (B12)
’ max{‘%?5 —§’>\§ﬂ} PR - =7
Finally,
55 |64 36 2 361%2 79
—| <4 : <366 |14~ <25+ )} B13
T (max{\3654 360" " [ s\t )] B

In sum, (B7) follows from (B9)—(B13). But given (B7), the martingale difference central limit
theorem of Billingsley (1968, Theorem 3.1) implies that each of the finite dimensional distrib-
utions of G¢(-) converges in distribution to a multivariate normal distribution with covariance
given by (B6).

(iii) The process G%(7, @) is stochastically equicontinuous if for all € > 0, there exists ¢ > 0

such that
lim sup Pr [ sup Gd(r1,01) — G(r2, @2)’ > 6] <e. (B14)
n—oo ”(7'17901)_(7—27902)”§07 (717W1)7(T21§02)€D}'w

In the rest of this section, we keep the restriction (71, 1), (72, p9) € D71'<p implicit to simplify
notation.

The proof has two steps. First, we show that for all € > 0, there exist ¢; > ¢o > 0 such that

€
Py sup Gi(r1, 1)~ Ga(ra0)| >e| < 2. (B1Y)
1(T1:01) —(T2,02) | <ez,|T1],|72|<2c1
Second, we show that given ¢ above, there is ¢; > ¢3 > 0 such that
d d €
Pr [ sup gn(Tlvcpl) - gn(T27902)‘ > 5] < 5 (B16)
[(T1.01)—(T2,02)[I<e3,|T1];|T2[>c1
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Let ¢ = min{ca, c3}. Whence (B14) follows from

Pr [ sup
Ii(

T1,01)—(T2,2)[|<c

Gl(r1,1) — gﬁ(f2,s@2)) > 6]

<Pr [ sup

[1(T1,01) = (T2,02) 1<, |71, 72| <2¢1

G (r1,1) — 92(727902)‘ > 6}

Gl(T1,01) — 95(72,902)) > 6}

U sup
[(T1.01) = (T2,02)[I<e | 1], T2 >e1

<Pr sup Gi(r1.1) = Gil(ranip2)| > @ (B17)
[(T1,01)=(T2,02) | <c2, |1, 2] <2e1
+Pr sup Gil(ri o) — Galra,p0)| > < (BIS)
l(T1,01)—(T2,00)[[Scs |1l 2|21
where the first inequality follows from that for 0 < ¢ < ¢4,
s |G — GiTa. ) (B19)

[(71,01) = (T2:2) [ <c

< max sup
[1(T1,01)—(T2,02) 1<, |71, 72| <2e1

gg(Tl, 901) - gg(TQa @2)‘}

Gi(r1.01) = Gilra,00)|

sup
1(T1,01) = (T2,02) [ Lc,| 1], T2 =1

and the second inequality follows from ¢ < ¢ and ¢ < c3.
We next show that there exist ¢; > ¢a > 0 such that (B15) holds. Given (BS8), we will have
that

_Hy +06'— iK% Hjy 3ok Z 1 1 0%L,(0,0,1) 87

d 9 _
Gn(T,9) N N iljly/n ONDS'ORT T

4>i+j>3,j>1

where |0] < |8], |#| < |«|, and 8, k, &, & are functions of (,¢) even though we have omitted
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these arguments. Therefore
1 2
57 971, 01) = Gilr2,00)]

< () {7 Gat=oot) = Gt =3}

3672 82 (B20)
H. 2 1 1 2
1 1 8°L,(0,0,1) » e
+4>z‘+j§>:3j>1 (l'J' f&)A(‘)é@/ﬁ;J) { 51“1 — T2 52“2} (B22)

11 0Ly (6,5 0N\> [ ooi 27 201 2;
" Z5é|<sz‘su|p|< (Mﬁam&%) {Tl 0Ty + 73 035 } (B23)
l+j: SO,|R|ISK

where §; = §(71,¢1), k1 = k(T1,¢71), 02 and Ky are defined in the same way. First, we can easily
check that
N N
1 1 6 . 2 6 2
. (”8L (Q,o,‘1)> :E<181(0,0,1)) o
il /n ONOS'OKI

ilj! ONDS Ok

by the iid assumption and the zero expectation of these terms. Second, for the terms (B20)
Y

E

[hi] <oo, B

=E [h3] <

and

(B23), we can show that the non-random coefficients in {} converge to zero as c1,co — 0, using
arguments in (B12), (B13) and Lemma 9. To be more specific, for (7,¢) € D!, we have
1 1 1
—1 4 2 412
T (3661 81>_7'2 < 03 8 >_1_1_0
1

—1
27'1 51/@1 - =

_ 1
27'2 162/@2 =

5(901 — )
_ i—1,.J—1 i—1 j—1 o
= 107 K] — ol KD ifi>1,
1 151’41 —72152“2 {_ ' ' ’ i

=77 /<;1—7'2 /4;2<sup‘—‘ (k1 + ko) ifi=0"

and the same applies to 7] 2(51 /ﬂ?lj . Together with Lemma 8.3, which implies that

( 1 9L, (6, k, 1)>2
sup _——

E

16]<5,|k|<R Vo ONIS Ok

we can find ¢; > ¢ > 0 such that

— B

.. 2
sup (G19(, ) ) ] < o0,
S]]

E sup

d d 2l _ €
(Ghri 1) = Gllrao)) | <5 (B24)
[(T1,01) = (T2,02) | <c2,71,72<2¢1
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Then Chebychev’s inequality implies that

Gl(r1, 1) — GilTa, <P2)‘ > 5]

Pr sup
(T1,01) = (T2,00) | Sc2,| 71,72 <201

1 2
up (Gir1e1) = Gilr2, 22) ] =

<5
€8 | 1(rip)—(ra.p0)l|<ea,|r1 |2l <261

E

Step 2. Given ¢y, we need to find c3 such that ¢; > ¢3 > 0 and (B16) holds. First, we change
(1, ) into (d, k) for simplicity. For (7,¢) € D', it holds that

1 1 1
— 6> 5t — K2 =7(0,K) > 1,6 > 0

1
which implies § > \@cf. Moreover, for all cg > 0, there exists a ¢ > 0 such that

{(T1.01,72,02) € Bf, x Bl : [(1,01) — (T2, 02)|| < ¢3,71,72 > 1}

1
C{(r1,¢1, 72, 09) € Bl x By, : [|(61, k1) — (02, k2)[| < ¢B, 01,69 > V6ef}  (B25)

because {(7,¢) € D;p 7> ¢} is a compact set, and 7(6,x) and ¢(d, k) are continuous on
this set. Therefore, it suffices to find cp such that {G,(d,k) : |d] > \/601/4,(5, k) € A} }
is stochastically equicontinuous on (B25). To do so, we use Theorem 1 of Andrews (1994).

Specifically, we use the notation f for G,(8,x) = - > [ (i, 0, k) and show that f belongs to

n

the type II class of functions defined in Andrews (1994, p.2270). This is the class of Lipschitz

functions in (4, k), which is such that
[f (01, k1) = f (02, k)| < M (1) (|01 = G2 + [r1 — Kal)

for all (81, k1), (62, k) € AL [61],162] = V6ei/.
Note that

1 0l 1 9l
;5(717901) - 725(727902) = y?[D1(71,01, K1) — D1(72, 02, K2)]

+ Y [DQ(T17517’%1) - D2(T27627H’2)]
+ [D3(71,901, K1) — D3(72, 2, K2)]

S -
1 es M 1 1 1
= _ 5 2 -2 752 =
TleXp 5 (01 +) +2?J +61 51
1 : eéﬂf? 1 1 1 :
- _ 5 2 T2 se2 o B26
where
1 2 142 B) 1 2
Dy(1,0,k) = 57_16”_% + 37 Dy(1,0,Kk) = — and D3(7,0,K) = —57'_1 (e”_é?) — (52)
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so that D1, Dy and D3 are all Lipschitz in (6, ) for (§,x) € A}, and 7 = 7(d, ). And for the

last term in (B26), the mean value theorem implies that

52 7
1 es M 1 1 1
R _ o) 2 -2 752 -
TleXp 5 (01 +y) +2y +61 2,%1
1 : 57“2 1 1 1 :
e
- o 5 2 =2 752 .
+T2€Xp 5 (2+y)+2y +62 512
g—f‘ 1 1 1 1 _
€ % 2 2 2 -
=exXp | — (6 +y) Ty +66 gk {72(71—7'2)
1 ﬁfﬁa ~3 ~ ) ~2 ~
o [ (5 436+ 0y? + 25 y+3y>_5 (61— 52)
7
toz |13 0+ y)7) (k1 — k) . (B27)
In addition,
1 1 1 1
|71 — 2| = %5% - gn% - %53 + gﬁ%
1 1
= |35 (01 +03) (61 + 02) (01 — 02) = 2 (W1 + #) (k1 — )
1= I
< *53\51—(52]—1-*]/4:1—%2]. (B28)
9 4
Moreover
g_'{ 1 1 1
¢ 2 2 2 *
i 5 —0" — K| < B2
exp 5 O+ )"+ 5y" + 20" — okl < g7(y), (B29)
where .
* S 2 9 12 1
9" (y) = oxp | =Dyl +y°) + 5y° + 6 + 3R
Combining (B26), (B27), (B28) and (B29), we will have
1 ol 1 ol

715(71#?1) - ;25(72,@2) < (9" (y) + 1) {a1 + azly| + azy®} (|61 — 02| + [m1 — ko).

But since

E[(g*(y) + 1) {a1 + asly| + asy?}] < oo,

f will be Lipschitz with M (y) = (g*(y)+1) (a1 + az|y| + asy?) for some constants a1, az and as.
To apply Theorem 1 of Andrews (1994), we need to check Assumptions A, B, and C. Assumption
A: the class of functions f satisfies Pollard’s entropy condition with some envelope M. This is

satisfied with M = 1V sup|f| vV M(.) by Theorem 2 of Andrews (1994) because f is Lipschitz.
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In turn, Assumption B:

JER N
lim sup — ZEM%“ (yi) < oo for some v > 0,
=1

n—oo T %

is also satisfied because y; is a standard normal random variable. Finally, Assumption C: {y;}
is an m-dependent triangular array of r.v’s holds because {y;} is ¢id. Stochastic equicontinuity
of f follows from Theorem 1 of Andrews (1994). Thus, for given € > 0, we can find ¢p such that
(B16) holds.
In sum, the results hold by virtue of (B17) and (B18). O
Step 3
[gire)]”

Lemma 3 supyep1 LR%(d) = supgepr LM2(d) + 0p(1) = SUP(rp)eDt, Vg T op(1).

Proof. Since

sup LR} (d) — sup LMif(d)' < sup sup  LRI(n,7,0)— sup LMI(n,7,¢),
deD! deD! (T.p)eDL, |n:(n,Tp)eD1 n:(n,7,p)€D?
it suffices to show that
sup  LRI(n,7,0)= sup LMI(n,7,¢)+op(1). (B30)
n:(n,7,p)€D? n:(n,7p)€D?

Expression (B30) follows from Andrews (2001). To see this, we need to check his assumptions.
Let

1 (n,7,0) = 10(1,0), K(T,0), \(n, T, )

denote the log-likelihood of y; written in d € D!. The null hypothesis is Hy : 7 = 0 and (7, ¢)

is the nuisance parameter that only appears under the alternative. Let

LRY(f,p7o0) = sup  LRi(n,7,¢).
n:(n,7,)€D?

To verify Assumption 1, namely 7)., = 0p7o(1), let 14(d) = E [1%(1, 7, ¢)]. Invoking Lemma

6, we have
L a d 1 P
sup |~ L (d) — 190, 7, )| < sup | Ly (6) — lo(6)] 2 0 (B31)
deD! | T 9co |1
(i.e. uniform convergence). Moreover, for all € > 0,
13d) > sup  1d(d) (B32)

n>e,decl(D1)

(i.e. well separated maximum), which follows from the fact that n = 1 is the unique maximizer
(note that (1 — ) < max{|d|, |«|}), l&(d) is continuous and cl(D?) is compact. As a result,
Lemma A1l in Andrews (1993) implies that we have 7)., = 0p 7, (1).
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Assumption 2* holds with By = /n using Andrews (2001) notation, see Lemma 1. Assump-
tion 3* holds by Lemma 2. Assumption 4 is implied by Assumptions 1, 2* and 3. Assumption
5 is satisfied for By = by = /n and A = R™. Assumption 6 holds because R~ is convex.
Assumptions 7 and 8 hold with Ag = R™ and with the fact that 6 and v are absent in our
setting. Assumptions 9 and 10 are satisfied. Assumptions 1o and 4o hold trivially because the
restricted estimator is n = 0 and therefore not random.

By Theorem 4 and the remark at the bottom of p. 719 of Andrews (2001), it follows that
(B30) holds.

Step 4
In this step, we show that

1 (min {0L, (3, 5, 1)/0X, 0})?
sup 2[L,(9¥) — L£,(0,0,1)] = —  sup 1),
Ve’ () ( ) N 9eer\(0,0,1) V (4, ») (1)

where we use the notation £,, for the log-likelihood indexed by ¥}, whereas L,, is the log-likelihood
indexed by 0. First, by the results in Step 3, we have

d 2
sup LRZ(d) = sup 7@”(7-’()0”_

+ op(1).
de Dk (T,p)EDE, Vd(T’ (P) P

Noticing also that

Gd(r, 2 (5, 5) |2
sup LR%(d) = sup LR,(f) and sup LS‘P)J_ =  su M)
deDr beak (rp)eDk, v (T.9) (6,k)€Ak, V(d,k)

we will have that

2
_ d _ n(57 KJ)J —
R = A P S TR
1Gn (6, %) ]2
= sup ———— +0,(1).
(8,K):(8,K,1)EPy V(57 H) P
Therefore,
0 (6, 1))
sup 2 (L, (¥) — £,(0,0,1)) = sup LR,(0) = sup M +0p(1)
9P 0eP, 6.0):6,m)eP, V(0 K)

_ _— [Gn (3, %)J3
(0,7):(8,,1)€P; V((Sa %)

Finally, the asymptotic distributions of the LM tests follow from the continuous mapping

theorem. 0
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C Detailed proof of Proposition 6
Constant y and o?

We first consider the simple case in which we estimate both the unconditional mean and
variance parameters, say p and o2, respectively, under the additional assumption that they are

constants. Specifically, letting y = Vo2z + p and z ~ MixN(0, 1), we have that the pdf of y is

fr(y) = \/10_—2fz (y\/g) ;

so that the contribution of observation y to the log-likelihood, £(u, 02,6, 2, A; ), will be given

by
L1 1 <y —p ) 2
exp |53 | ——= — ,

simply given by

A 1 <y — B >
exXp | —5 — K
/72 2012 \ /o2 1
where k is an integration constant and

5(1—A) A

1
k— 510g02 + log {

MT: ) M;:_l—)\l[{’
14+ A1 — \)62
1
01?2 = and o3 = exp(s¢)oi2.

[14+ A1 = N8 A+ (1 — X) exp(52)]

Subtest in P, We consider the reparametrization in (3) and define
Ln(p, 0 5&)\):lil‘(u02 9, K, )
n ) Y ) ) n ‘ 1 K3 ) Y Y ) )
1=

with 1; (11, 02,6, 6, A) = €(p, 02,6,k — (2X — 1)62/3, X; 5.
To shorten notation, let p = (¢,60) with ¢ = (u,0?) and 0 = (,,A). Let ¢y = (1o, 03)

denote the true value of the parameter ¢. Next, define

LRn(Ma 0-25 67 Ky )‘) =2 [Ln(lu’v 027 5a K, >‘) - Ln(lan 0(2)7 07 0’ )‘)] (Cl)
and
pi = argmax LR(p), pkf =argmaxLR(p),
T pedx{0}2x[1/2,1] ’ pEDXP

where P can be replaced by Pg1,Pa2, Pz as needed, and ¢ denotes the feasible parameter
space of (11, 02). Then, it is easy to verify that pﬁf = (¢rr 0,0, M) with

n

I~ 1
¢n,r = (Mn,rvgi,r) - E Zyia g Z(yz - :umr)z ;
=1

i=1

which provide the restricted maximum likelihood estimators of ¢.
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Letting

£315%(6) =2 (- 22 ) i - o) + 2 <2}%f§ﬁ) V(o o) ()
- %n(u — p1g)* — Lo (0* = 03)”,

4
og 20

where

Yi — Yi — — 0
H]_7n = E h‘l’i = E i 'LQLO and H2,TL = E hz’i = E —( ! ILLO(?Q) 0 .
i=1 i=1 V90 i=1 0

i=1
Moreover, in the sequel LMZ(6; ¢) will coincide with (15) if we replace y; with (y; — pg)/+/03.

As in the proof of Proposition 1, we have the following five steps:
1. For all sequences of p,, = (¢,,, 0, kins An) With (@,,, 0ns kin) = (g, 0,0), we have that
LRn(py) = LM (6n) + LM% (¢,,) + 0p[hiy (82)] + 0p 15 (6],
where h£(¢) = max {1, n(p — pg)?,n(o? — 0(2))2} and

h0(0) = max {1,n(1 — \)26%,n(1 — X)26%k%, n(1 — N\)?k*} .

2. For ¢, = (utM,02FM) € argmaxyee LM{?(¢), we have that ¢EM = ¢, + op(1) and
RS (GEMY = O,(1); and also define §LM = (§EM LM \EMY  argmaxpce LME(0), we

have that (6ZM kEM) = 0,(1) and B2 (0LM) = O,(1).

»'n

3. For pﬁﬁ = (¢EB GLE (LR NLIY ¢ arg maxgeawp LRy (p), we have that

n,u “n,u Ynau nyu

(BLT — o, 6ER (LE) 2, ¢

n,u n,u Vnyu
and h(pLE) = 0,(1).
4. Then, we prove that LRn(pﬁf) - LRn(pﬁﬁ) = LM2(0EM) 1 0,(1).

5. Finally, show that the test is the same as before, but with y; replaced by (y; — j,, ) /0.

Before going into the details of these steps, let us emphasize that the main difference is in
Step 1, which shows that in the Taylor expansion the cross terms (73 defined below) of ¢ and 6
are negligible, and thus we can consider the two parts separately. Step 2-4 are almost the same
as before.

Step 1: Consider a sequence p,, = (¢,,, 0n, n, An) With (¢,,, dn, £n) LN (¢9,0,0). Let

L[k17k2,k37k4} _ 1 ak1+k2+k3+k4Ln(p)
" kl'kQ'k3'k4' aﬂk‘l (80-2)k2 857938,1134
p

n,0
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where p,, o = (¢9,0,0, ;) and

plibsil 1| O L) L)

n
with ((Nﬁn, On, Rn) between (¢,0,0) and (¢,,, 0n, kn). Consider the following eighth-order Taylor
expansion,

1
5 LEn(Pn) = Ln(ttns 03, 6ns Kins An) = Ln(tig, 05, 0,0, An)

= T1n(0n; 00) + Ton (B Bo) + Tn(pni o> 03) + A,

where

Tin(Oni o) = D LpOfmlowe,

ka+ks<8
. _ k1,k2,0,0 k 2 2\ k2
TQn(¢n’ ¢0) = Z L£Ll ? ](:U’n - NO) ! (Un - 00) )
k1+k2<8
k1,k2,k3,k ki (-2 2\ k2 ks k
T3n(pn; (bO) = Z L£117 2,ka k] (:un - H’O) ! (Un - J0) 5n3’%n4 and
k1+ko+k3+ks<8
k1+ko>1, kg+ka>1
k1,ko,k3,k k 2 2\k2 cks k
Ay = Z ALL]-’ 2 41(:“’71 - MO) ! (Un - 00) ’ 5n3K’n4

k1+ka+ks+ks=8

First, we will show that T3, (p,; ¢g) = 0p[h%(0,)] + op[hﬁ@n)]. Specifically, for (ki,k2) €
{(1,0),(0,1)} and (ks, k4) € {(k,0) : E <4} U{(0,k) : E <2}U{(1,1)}, we can easily check that

Efilkrkakska ()] = 0 and B{[1lErF2koka (5012} < oo,

which means that

@ QFrthathstkay, (p)
n

= 0,(1). C3
Okt (002)"2 06%3 01k e p(1) (©3)

Therefore, we will have that the (ki1, k2, k3, k4) term is such that

a/ﬁ +ko+k3+ks L, (P)

[ E1:k2 k3, ka] _ ki (52 _ 52)k2 oks ke _ @
" (hn = 0] o = 00) O o opk (902)" 95" akk |
0

X [\/ﬁ (tt, — t10)™ (o7 - U%)Iﬂ O it
= 0p[hf(9,)],

where the last equality follows from (C3) and the fact that ¥k = 0,(1). As for the remaining

terms in T3, we have either: a) k; 4+ ko2 > 2 so that

1 (1t — o)™ (02 — 03)" 65kt = 0, [h2(6,,)], (C4)
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or b) (ks, k1) € {(k,0) : k >4} U{(0,k) : k > 2} U{(k, k') : k, k' > 1}, 5o that

1 n
kb ksl (, — o) (o2 — o3)™ okonks = [n Zg(yi)] n (1, — o)™ (02 — 03)"
i=1
X (1 — Ay, )oks ks
= oplh(0n)],

where g(y) = ez ks al (Pno)/(1—Ay) is square integrable. In this case, the last equality follows

from
Vi (1, = 110)" (02 = 02)" /(1 = Ag)SE kb = 0,1 (0,,)]. (C5)

Secondly, we have to show that Th, = LM>%(¢,,; bo) + 0p [hﬁ(%)} Invoking Rotnitzky et al
(2000), we will have that

112000 1 -1 1 10200 1 _1 1 1100 _1
£L7[7,7 00 = _T‘(Q)—i_op(n 2)7 EL7[17 0.0 = _?‘(2)""01)(” 2) and gl—ﬁ[f 0.0 :Op(n 2).
Therefore
k 1 k
Do L (= o)™ (o = o)™ = D L% (u, — o)™ (o7, - 05)™
k1+ko=2 k1+ko=2
1 2 1 2
= — 5, — o) = =5 (07 — 05)” + 0 ()]

206 R

For ki + kg > 2, we have %L[fl’b’o’o} = 0,(1) and n (p,, — p1g)"™ (02 — U%)k2 = 0p {hﬁ(gf)n)}
Third, we have to show that Ty, = LM%(6,,) + op[h%(0,)]. But since this is the same as we
did in the proof of Proposition 1, we can omit it.
The last part requires to prove that AlF1F25s:#4] (1, — 1) (02 — O'%)kz Skagks = 0,(1) for
k1 + ko + k3 + k4 = 8, which is entirely analogous to the proof of Proposition 1.
Step 2: This step is trivial since maxgee LM @9 (¢) has a closed-form solution with probability
approaching one.
o v Frcs)

(¢0,0,0). Next, we can also show that hﬁ(Qﬁﬁ) = Op(1) and hi( ﬁﬁ) = Op(1) by an argument

analogous to Lemma 3 in Amengual, Bei and Sentana (2023).

Step 3: Following the proof of Proposition 1, we can first show that (

Step 4: It follows from the same argument as in the corresponding proof of Proposition 1.
Step 5: Simplify LM®(#EM) as in the proof of Proposition 1. Then by the stochastic

equicontinuity of the test statistic in ¢, we can replace ¢ by ¢, ..

Subtest in P, Here we use the reparametrization of Proposition 3 involving (7, 7, ¢). In terms

of Andrews (2001) notation, we have

Bi=mn, m=(r,¢) and ¢ = (u,0°).
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We show that we do not need to adjust for parameter uncertainty by verifying Assumption 7
of Andrews (2001), which guarantees that there is no cross term of ¢ and 7 in the quadratic

approximation. Let

LR} (1,0%,0,7,9) =LRn[p, 0%, 8(7,0), 5(7, 0), A(n, 7, )],
LMy (n,0%,,7, ) =2Gu(7, @)V — V (7, 0)nip® + LM (¢),
Ry (1, 0%, m,7,0) =LR (1,02, 1,7, ) — LM (1, 02,1, 7, 0),
where LR,,(p1,02,8, k, ) is defined in (C1) and LM% (¢) in (C2). We need to show that for all
sequences (i, 02, My, Ty ©p) With (i, — tg, 02 — 0,1,,) = 0, it holds that
Rn(/lnv 0-7217 Mns> Tns c)On) = Op {maX[nn%’ n(#n - :U’O)7 n(o-?z - 0(2))2]} . (CG)
To see this, we can modify the proof of Proposition 3. Let p, = (i, 02, 6n, fn, An) With
On =0(Tn, ©pn)s kn = K(Tn, p,) and Ay, = X(1,,, Tn, ©,,)- A third-order Taylor expansion gives

L(Mna U%, On, K, )‘n) - L(M()v ‘737 Ons Ky 1) = Tln(pn; ¢O) + TQn(pn; ¢0>
+ T3n(lon; ¢0) + T4n(pn7 ¢0)7

where
. _ 8L(pnO) o 18 L(pnO) o la L(pn) _1)\3
1 9" L(p, 1 &L(p ; .
Ton(oni 00) = 3 15 i o) (0 b+ 3 i P (02 =
1+75<2 i+j=3
and
9L (p,, 0*L(p,,
T (9 60) = 5 O = 1)1, = i) + 02 1, 1)(0%
10°L(p,) 2 1 9*L(p,) 2
2 oNop (An = 1%t = o) + 5157571355 (An —1)*(o7 - 03),

1 (1 &L(p,
Tyn = Z j'k;‘{n(‘?)\@/ﬂgzal)k} (i, = o) (05 — 03) (A = 1)

k=2

with p,, = (fip, 52, 0ns Fin, An) between (tiy,, 02, 6n, kin, An) and pno = (Ko, 03, Ons kin, 1). We can
show that

2T1n(pp; $0) = 2G0Ty M) V110 — V (T, mn)nni + Op(mli) (C7)

using the same argument as in Proposition 3. Moreover, it is straightforward to show that

2T2n(¢n; ¢0) = LMr?(gbn) + Op [n (0-31 - 03)2 +n (iun - M0)2] (CS)
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We can also show that

Tantpi0) = { =20 i, = )] (1)
+{ ST (o2 - o) (- 1)
(SR b, ol O~ )
- {ir;;i;; b (o = ahme] O 1)
— oylnlis, — po)? + 1 (0 — oF)° + ], (©9)

where the first equality follows from 7,, = (1 — \,,)7,, and the second one follows from Lemma

8 and A\, 2 1. The result relative to Ty, is easy, as A, — 1 and n(u, — o)/ (02 — od)* =

Oln(p, — po)* +n (o2 — 0(2))2], so that
Tin = opln(pt, — 19)* + 1 (0% — 03) ). (C10)
Combining the results in (C7), (C8), (C9) and (C10), we finally prove (C6).

General p and o2

Let us now consider the general case in which the conditional mean and variance are para-
metric functions of another observable vector X.

In this context, let Wy = (Y3, X;) and assume that

Y= py (73 ¢)
o} (x; ¢) o2 (z;9)

fYt|(Xt,Wt*1)(y|$awt_1) = fYt\Xt (ylz) =

As a consequence, the (conditional) log-likelihood can be written as
bp(, 8,56, 3 Yy, Xi) = Llpy (X3 ), 0% (X33 ), 0, 22, A Vi]

the subscript p is for “parametric” and ¢ was defined in the previous section. Accordingly, we
denote the likelihood after reparametrization as l,(¢, d, &, m; Yy, X¢).

For P, part, we only need to check the argument in Step 1 since Steps 2 to 4 are the same.
First, notice that for every vector k —with the same dimension as ¢— such that |k| = 1 and
(ko,k3) € {(k,0) : E <4} U{(0,k) : k <2} U{(1,1)},

. 2 (..
(lenaskal oy — (10 kaiks] (po)aﬂya(;it; ) 1[0k k] (po)aaya(;it, ¢).
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Therefore, by the law of iterated expectations, we will have

E[ b2kl (py)] = B{E[ ") (pg)| ]}

= p {25 pyakesl y1xa} + {WE“?’LW (i}

=0

because E[l?’o””””] (po)| Xt = E[ZLO’I’M’]C?’} (po)|Xt] = 0. Hence, if Assumptions 1 and 2 hold,
then the same arguments in Step 1 applies. Analogous arguments apply for the P, part too,

which completes the proof. ]

D Additional lemmas
Lemma 4 Fork=1,...,16, let
Dk = {(n, 7,¢) : there exists 0 € A* such that (20)-(19) holds} .

Then, (i) for all @ € A¥, there exists a unique d € D* such (20)-(19) holds; (i) for all d € D¥,
there exists a unique 6 € A* such that (20)-(19) holds.

Proof. (i) is straightforward. As for (ii), we show it for & = 1 since the proof for k = 2,...,16 is
similar. We only need to show the uniqueness of 6, as the existence follows from the construction
of D!. Note that 7 > 0 for all § € A', thus A = 1 — /7. With the restrictions of A!, it holds
that

1 1 1
%(54 - gffz =7, that is, 55% = QT. (D1)
Hence, we can easily write
2 4 4722
Since the left hand side of (D2) is strictly increasing in 6%, we can get unique §. Finally, we get
k from (D1). O

Lemma 5 If

s 21—+ N2

(a) V(1 = An)dntin = Op(1) and (b) Vn(l— ) |ky 9 0n| = Op(1),

where A, € [1/2,1], then we have \/n(1 — \,)k2 = Op(1) and v/n(1 — \,)65 = Op(1).

n

Proof. From (b) we have
2
Vn(l = M)k = o= 2n+ A2)V/n(1— N\,)o% + O,(1).

But if /n(1 — \,)0% = Op(1), then we can trivially show that /n(1 — A\,)x2 = Op(1) because
1 — X\, + A2 € [3/4,1]. The rest of the proof is by contradiction.
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Let us assume that /n(1 — )84 # O,(1); in other words, that there exists an e > 0 such
that for all M,
Pr(n2 (1 — An)0% > M) > e i.o. (D3)

Next, given that v/n(1 — Ay)k2 — 2(1— Ay + A2) /(1 — Ap)dp = Op(1), there exists an Mj such

that
Pr <

for all n. Consider M’ > max{Mg,(_SQ/G} and let M; = 6M' 4+ 6M;. In view of (D3), we have
that

V(L= A = 201 A V(L M) :

<M2>>1—6

Pr[nz (1 — A\,)d% > 6M' + 6]My) > € io.

Let
Ap = {nz2(1=A,)0% > 6M + 60y}

and
Bu = (V{1 ~ AR — 2(1 = A+ NV~ M54 < Mo},

Since Pr(A,,) > € i.0. and Pr(B,) > 1 — ¢/2 for all n, we will also have
Pr(A, N By) > Pr(4,) + Pr(B,) — 1 > % i.0.

On the set A, N B,,, we have

B(L = A)2622 = V(L = A)32 {ju e X2 = At

> v/n(l — \,)o2 [3(1 — A+ A2Vl = \,)0t — Mg} (D4)
> VAL = A3 | GV - 2,08} - 0 (D5)
> vn(l - An)éi];/ (D6)
> vn( ; An)dn > M + My > M, (D7)

where (D4) uses the definition of By, (D5) uses 1 — A, + A2 > 3/4, (D6) combines the definition
of A, with 62 < 5%, and (D7) uses the definitions of M" and A,,. Hence, A, N B, C {n(1 —
An)20%K2 > M'}, which implies that for all M,

Prn(1 — \,)?0%6% > M'] > = i.o.

€
2
which is a contradiction to (a). Thus, we have proved that \/n(1 — A,)x2 = Op(1) and /n(1 —

n

)64 = Op(1), as desired. O
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Lemma 6 (uniform convergence) Denote lo(0) = E[l(0)]. Assume the data is iid, E (y*) < oo

and © is compact. Then,

SUPgeco

L (0) zo(e)‘ 2.

n

Proof. Let 62 = exp(5)/\ = 2exp(5) be an upper bound for max (o2, 0%2), 02 = e=2%/(1 +
)

52/4) a lower bound for min(o3?, 032), and ji = ¢ an upper bound for both |u}| and |u3|. Then,

we have
1 (y — p3)? 1 y — 113)?
1(0) =1 A—— — 1—A -
( ) 0og { m exp |: 209{2 + ( ) 0_32 exp 20_32

1 — )2 1 . %\2
e P e | RS PP =)

— *)2 _ . *\2
> iog(e) - AT+ (= Ny — p3)
2 202
Lo oy (2l +R)?
> ] 2y _ MM TR
—_— 2 Og(o— ) 2Q2 9

where the first inequality follows from the concavity of the logarithm, the second one from the

definitions of &2 and ¢?, and the last one from the definition of fi. Moreover,

(y — p})?

1(0) =log< A ! exp[—]ﬂ-(l—A) ! exp[—W}
A /()‘I2 20’;2 A\ /0'32 20’32
1 1 1
<logg  \——=4+1-A)—| =log| ——= | -
g[ 7Y ] g(ﬁ?)

(3

it is straightforward to see that [I(0)| < d(y) and E[|d(y)|] < co. Note that L, (6) is continuous
at V0 € © with probability 1. Thus, by Lemma 2.4 in Newey and McFadden (1994),

Next, letting

.9 )
d(y) = W + ‘log(UQ)‘ +

)

SUPgeo n

1
Ln(0) — 50(9)‘ %0,
as desired. OJ

Lemma 7 If there exist an My > 0 and a § < 1 such that |Hs,/v/n| < My, [Hayn//n| < M,
lwy] > My /€, |wi| > |wal, rn(0)/w? < &, then LR, (0) < 0.
Proof. We have that

H3,n
N

H4,n

LR, (0) =2 NG

wy + 2 Wy — V},w% - V4w% + 7rn(0),
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so that

LR, (0 Hsz, 1 H 2 5, K, A
n2( ) —9 3,n7+2 47”%—‘/3—‘/4%4-7.”( 72"47 )
wi LR Vn wi wi wi

§2§+2§%—V3+§
1

<58 —V3
<0
because V3 = E[h3] = 6, which proves the result. O

Lemma 8 (Weak convergence)

2
(8.1) i (Lr 1 ELCASEON _ p [ PEaman]) Z 0, ().

_103L(8(T,),k(T,0), T, _193U1(8(T T T
(8.2)\%(%7 193L(8(,p) 8&3@)/\(77 so))_E[ 1%U(8(7,0) .5 égAw)A(n @))D:On(mp)(l)-

(8.3) L LLaORD) _y Glil(5, ) for i+ = 5.

_10*L(8(T, 0), T,
(8. 4) 1, —197L(8(r.9).k 8()\ T,0)AMT8)) Op,(T,(p)(l)'

(8.5) 72E [8 1(5(7',90)7I€{§;§P)7)\(777T,80))] = O(r.)(1).

(8.6) With p and o 1 L) _ Op(1) and L P Lloy) _ Op(1).

7 /n OXOp vn 0Xdo?
3 ~
(8.7) With p and o2, {%T,jlaafg(gz)} =0p(1) and {711 ;1%)\2%’"2)} = 0p(1).

Proof. The proofs of (8.1) and (8.2) are similar to the proof of Proposition 1. Therefore, we only
give the Taylor expansion of 821(8,k,1)/0A% and 931(5, k,1)/0X3 to justify the normalization
771, but omit the detailed steps. Specifically, a fifth-order Taylor expansions yield

agl(&/’%l) a1 4 1 2

192+1(5, 1, 1) ! 1 92++i)(5,k,1)
= (27"? )5z+ Z - . (i7’€; )6ZH]
v 0N itjesisl 1 T OO0k

Z L@“”H(S,R,l)yﬂj
s 1l ON2058' Ok

and

+i 4 3+i+j A

81((;5:1)_8h454+216 l(35/<;1)5 n Z %8 3l(f’ﬂ;1)5zn3
A IN"0d itjmsisiy1 I ONO0'Ok

3+i+i1(§ R .

R

it2s 0 0N 000k

The proof of (8.3) is similar but much simpler, as it is not normalized by 7. To prove (8.4),

it suffices to apply the uniform law of large numbers (see Lemma 2.4 of Newey and McFadden
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(1994)) and use

. 0) = 1 a*(4(r, so)ﬁ(;Tf) A7) if 7 £ 0,
g lim: o7 _1841(6(”0) Nd(; 2)AMTR) — 94pt i + = 0.

To see (8.5), notice that

3
E [g)\é] = —896006% — 54k* — 366%K% + o(7?).

As for (8.7), we can also show that evaluated at p,

;;;I;u = Hs + %HQﬁg—l—Op(T)
and 1 &L, 16 1 11, 31,
noNdo?  30%n o Had® & **H‘“"’ J*H?’ +0p(7),
where R
;= Zy(y2 —3) and Hy = Zy4 — 62 +3 with §; = ZyU“
whence we prove the desired result. U

Lemma 9 ‘%54 — %mﬂ — 0 and ‘%(5&‘ — 0 implies § — 0 and kK — 0.

Proof. Once again, we prove this by contradiction. If the lemma does not hold, then one of
the following statement must be true:

(i) there exist sequences 0, Kk, such that }%631 — %/ﬂ%‘ — 0 and ‘%571/%‘ — 0 but §, — 0" #0,
or

(ii) there exist sequences 0, Kk, such that ’3—1654 — l 31| — 0 and |15 lsn} — 0 but k, — k* # 0.

Consider ( ! 1) nn} — 0 and 6, — 6" # 0 implies k, — 0, thus
1 1 .
‘3(55?3 g"éi — %5714 # 0,

which is a contradiction to ‘36(54 -z 2’ — 0. Similarly, for (ii) ‘ ) /{n’ —0and kK, — K*#0
implies §,, — 0, thus

Lo Lol [l

36" 8" 8 " ’
as desired. O
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