Moment tests of independent components*

Dante Amengual
CEMFI, Casado del Alisal 5, E-28014 Madrid, Spain
<amengual@Qcemfi.es>

Gabriele Fiorentini
Universita di Firenze and RCEA, Viale Morgagni 59, 1-50134 Firenze, Italy
<gabriele.fiorentini@Qunifi.it>

Enrique Sentana
CEMFI, Casado del Alisal 5, E-28014 Madrid, Spain
<sentana@cemfi.es>

February 2021
Revised: September 2021

Abstract

We propose simple specification tests for independent component analysis and structural
vector autoregressions with non-Gaussian shocks that check the normality of a single shock
and the potential cross-sectional dependence among several of them. Our tests compare the
integer (product) moments of the shocks in the sample with their population counterparts.
Importantly, we explicitly consider the sampling variability resulting from using shocks com-
puted with consistent parameter estimators. We study the finite sample size of our tests in
several simulation exercises and discuss some bootstrap procedures. We also show that our
tests have non-negligible power against a variety of empirically plausible alternatives.
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1 Introduction

The literature on structural vector autoregressions (SVAR) is vast. Popular identification
schemes include short- and long-run homogenous restrictions (see, e.g., Sims (1980) and Blan-
chard and Quah (1989)), sign restrictions (see, e.g., Faust (1998) and Uhlig (2005)), time-varying
heteroskedasticity (Sentana and Fiorentini (2001)) or external instruments (see, e.g., Mertens
and Ravn (2012), Stock and Watson (2018) or Dolado, Motyosvski and Pappa (2020)). Recently,
identification through independent non-Gaussian shocks has become increasingly popular after
Lanne, Meitz and Saikkonen (2017) and Gouriéroux, Monfort and Renne (2017). The signal
processing literature on Independent Component Analysis (ICA) popularised by Comon (1994)
shares the same identification scheme. Specifically, if in a static model the N x 1 observed
random vector y — the so-called signals or sensors— is the result of an affine combination of N
unobserved shocks €* — the so-called components or sources— whose mean and variance we can

set to 0 and Iy without loss of generality, namely
y = p+ Ce’, (1)

then the matrix C of loadings of the observed variables on the latent ones can be identified (up
to column permutations and sign changes) from an i.i.d. sample of observations on y provided

the following assumption holds:!

Assumption 1: Identification

1) the N shocks in (1) are cross-sectionally independent,

2) at least N — 1 of them follow a non-Gaussian distribution, and
3) C is invertible.

Failure of any of the three conditions in Assumption 1 results in an underidentified model.
The best known counterexample is a multivariate Gaussian model for £*, in which we can
identify V(y) = CC' but not C without additional structural restrictions despite the fact that
the elements of €* are cross-sectionally independent. Intuitively, the problem is that any rotation
of the structural shocks e** = Qe*, where Q is an orthogonal matrix, generates another set of NV
observationally equivalent, cross-sectionally independent shocks with standard normal marginal
distributions. A less well-known counterexample would be a non-Gaussian spherical distribution
for €*, such as the standardised multivariate Student ¢. In this case, the lack of identifiability of
C is due to the fact that e* and €** share not only their mean vector (0) and covariance matrix
(I), but also the same non-linear dependence structure.

The purpose of our paper is to propose simple to implement and interpret specification tests

that check the normality of a single element of €* and the potential cross-sectional dependence

'The same result applies to situations in which dim(e*) < dim(y) provided that C has full column rank.



among several of them. In very simple terms, our tests compare the integer (product) moments
of the shocks in the sample with their population counterparts. Specifically, in the Gaussian tests
we compare the marginal third and fourth moments of a single shock to 0 and 3, respectively.
In turn, in the case of two or more shocks, we assess the statistical significance of their second,
third and fourth cross-moments, which should be equal to the product of the corresponding
marginal moments under independence. Many of these moments tests can be formally justified
as Lagrange multiplier tests against specific parametric alternatives (see e.g. Mencia and Sentana
(2012)), but in this paper we do not pursue this interpretation. Like Almuzara, Amengual and
Sentana (2019), though, we focus on the latent shocks rather than the observed variables in view
of the fact that the identifying Assumption 1 is written in terms of €* rather than y.

If we knew the true values of p and C, pg and Cy say, with rank(Cy) = N, our tests would
be straightforward, as we could trivially recover the latent shocks from the observed signals
without error. In practice, though, both g and C are unknown, so we need to estimate them
before computing our tests.

Although many estimation procedures for those parameters have been proposed in the lit-
erature (see, e.g., Moneta and Pallante (2020) and the references therein), in this paper we
consider the discrete mixtures of normals-based pseudo maximum likelihood estimators (PM-
LEs) in Fiorentini and Sentana (2020) for three main reasons. First, they are consistent for
the model parameters under standard regularity conditions provided that Assumption 1 holds
regardless of the true marginal distributions of the shocks. Second, they seem to be rather effi-
cient, the rationale being that finite normal mixtures can provide good approximations to many
univariate distributions. And third, the influence functions on which they are based are the
scores of the pseudo log-likelihood, which we can easily compute in closed-form. As we shall see,
these influence functions play a very important role in adjusting the asymptotic variances of the
different tests we propose so that they reflect the sampling variability resulting from computing
the shocks with consistent but noisy parameter estimators.

In this respect, we derive computationally simple closed-form expressions for the asymptotic
covariance matrices of the sample moments underlying our tests under the relevant null adjusted
for parameter uncertainty. Importantly, we do so not only for the static IcA model (1) but also
for a SVAR, which is far more relevant in economics.

In many empirical finance applications of SVARs, the number of observations is sufficiently
large for asymptotic approximations to be reliable. In contrast, the limiting distributions of our
tests may be a poor guide for the smaller samples typically used in macroeconomic applications.

For that reason, we thoroughly study the finite sample size of our tests in several Monte Carlo



exercises. We also discuss some bootstrap procedures that seem to improve their reliability. Fi-
nally, we show that our tests have non-negligible power against a variety of empirically plausible
alternatives in which the cross-sectional independence of the shocks no longer holds.

The rest of the paper is organised as follows. Section 2 discusses the model and the estimation
procedure. Then, we present our general moment tests in section 3, and particularise them to
assess normality and independence in section 4. Next, section 5 contains the results of our Monte
Carlo experiments. We present our conclusions and suggestions for further research in section

6, and relegate some technical material and additional simulations to several appendices.

2 Structural vector autoregressions

2.1 Model specification

Consider the following N-variate SVAR process of order p:
Y =T+ Z?zl Ajytfj + CE:, Ez(utfl ~ 1.4.d. (0, IN), (2)

where I;_; is the information set, C the matrix of impact multipliers and €} the “structural”
shocks, which are normalised to have zero means, unit variances and zero covariances.

Let e, = Ce} denote the reduced form innovations, so that e;/l;_; ~ i.i.d. (0,%) with
3 = CC’. As we mentioned in the introduction, a Gaussian (pseudo) log-likelihood is only
able to identify 3, which means the structural shocks €} and their loadings in C are only
identified up to an orthogonal transformation. Specifically, we can use the so-called L matrix

decomposition? to relate the matrix C to the Cholesky decomposition of ¥ = X LX) as

C=3.Q, (3)

where Q is an N x N orthogonal matrix, which we can model as a function of N(N — 1)/2
parameters w by assuming that |Q| = 1.> Notice that if |Q| = —1 instead, we can change the
sign of the " structural shock and its impact multipliers in the i*” column of the matrix C
without loss of generality as long as we also modify the shape parameters of the distribution of
e, to alter the sign of all its non-zero odd moments.

In this context, Lanne, Meitz and Saikkonen (2017) show that statistical identification of both

the structural shocks and C (up to column permutations and sign changes) is possible under

2The LQ decomposition is intimately related to the QR decomposition. Specifically, Q'3’ provides the QR
decomposition of the matrix C’, which is uniquely defined if we restrict the diagonal elements of 3, to be positive
(see e.g. Golub and van Loan (2013) for further details).

3See section 10 of Magnus, Pijls and Sentana (2021) for a detailed discussion of three ways of explicitly
parametrising a rotation (or special orthogonal) matrix: (i) as the product of Givens matrices that depend on
N(N — 1)/2 Tait-Bryan angles, one for each of the strict upper diagonal elements; (ii) by using the so-called
Cayley transform of a skew-symmetric matrix; and (c) by exponentiating a skew-symmetric matrix.



the IcA identification Assumption 1, which we maintain in what follows. Popular examples of
univariate non-normal distributions are the Student ¢ and the generalised error (or Gaussian)
distribution, which includes normal, Laplace and uniform as special cases, as well as symmetric

and asymmetric finite normal mixtures.

2.2 Pseudo maximum likelihood estimators

2.2.1 The criterion function

Let 0 = [7/,vec (A1),...,ved (A,),ved (C)] = (t',a},...,ay,,c) = (1/,a’,c') denote the
structural parameters characterising the first two conditional moments of y;. In addition, we
assume €5 |I;_1 ~ i.i.d. D(0,1, g;), where g, is a g; x 1 vector of variation-free shape parameters,
so that in principle different shocks could follow different distributions. For simplicity of notation,
though, we maintain that the univariate distributions of the shocks belong to the same family.
We can then collect all the shape parameters in the ¢ x 1 vector ¢ = (g},...,0y), with
q= Zf\il ¢, so that ¢ = (€', 0') is the [N + (p + 1)N? + ¢] x 1 vector containing all the model
parameters.

Given the linear mapping between structural shocks and reduced form innovations, the con-

tribution to the conditional log-likelihood function from observation y; (t =1,...,7T) for those

parameter configurations for which C has full rank will be given by

lyt; @) = —In|Cl+1n f[e7(0); o] = —In[C|+1n fle7,(0); 1]+ . . +1In flen,(0); en] = :(#), (4)

where f[e%(0); 0;] is the univariate log-likelihood function for the i** structural shock, €} (8) =

Cle0),and ;@) =y, — T — A1yr 1 — ... — A,y are the reduced-form innovations.
2.2.2 The score vector

Let s;(¢) denote the score function 0l;(¢)/0¢, and partition it into two blocks, sg¢(¢) and
Sot(¢), whose dimensions conform to those of @ and g, respectively. Fiorentini and Sentana

(2021) show that the scores can be written as

@) = 12u(0).240] | &9 | = 2u(0es(0) o)
Sgt(¢) = ert(¢)7 (6)
where
Iy

yi-1 @Iy
Z,,(0) = ; cv, (7)
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by virtue of the cross-sectional independence of the shocks, so that the derivatives involved

de

correspond to the underlying univariate densities.

2.2.3 The asymptotic distribution

For simplicity, we assume henceforth that the SVAR model (2) generates a covariance sta-
tionary process.* Consider the reparametrisation C = J®, where ¥ is a diagonal matrix whose
elements contain the scale of the structural shocks, while the columns of J, whose diagonal ele-
ments are normalised to 1, measure the relative impact of each of the structural shocks on all the
remaining variables. Proposition 3 in Fiorentini and Sentana (2020) shows that the parameters
a; = vec(A;) and j = veco(J) are consistently estimated regardless of the true distribution.’
As a result, the pseudo true values of those parameters will coincide with the true ones, i.e.
Ajco = a0 and joo = jo. In contrast, 7 and @ = wvecd(¥) will generally be inconsistently
estimated, so T # To and ¥, # Y.

Nevertheless, Fiorentini and Sentana (2020) prove that the unrestricted PMLEs of 7 and

If the autoregressive polynomial (Ixn —A;L —...— A,LP) had some unit roots, y; would be a (co-) integrated
process, and the estimators of the conditional mean parameters would have non-standard asymptotic distributions,
as some of them would converge at the faster rate 7. In contrast, the distribution of the ML estimators of the
conditional variance parameters would remain standard (see, e.g., Phillips and Durlauf (1986)).

?See Magnus and Sentana (2020) for some useful properties of the veco(.) and vecd(.) operators.



which simultaneously estimate @ will be consistent too when the univariate distributions used for
estimation purposes are discrete mixtures of normals, in which case 8 = 0y and €} (6y) = €;.
For that reason, in what follows we focus on the finite normal mixtures-based PMLEs of the
original parameters 8 = (7/,a’,c’).

Still, the potential misspecification of this distributional assumption implies that the as-
ymptotic covariance matrix of the corresponding PMLEs must be based on the usual sandwich

formula. Let
Abooi o) = —E[08¢1(Po0)/08) [ ip0] (12)
and

B(¢oo; o) = Viset(¢oo)l 0] (13)

denote the (-) expected value of the log-likelihood Hessian and the variance of the score, respec-
tively, where g, are the pseudo true values of the shape parameters of the distributions of the
shocks assumed for estimation purposes, v contains the potentially infinite-dimensional shape
parameters of the true distributions of the shocks, and ¢ = (8, v). The asymptotic distribution

of the pseudo ML estimators of ¢, (AﬁT, under standard regularity conditions will be given by

VT (b — doo) = N[0, A (@oo; £0) B(@oo; £0) A (Do 0)].

In what follows, we shall make extensive use of the detailed expressions for the conditional
expected value of the Hessian and covariance matrix of the score for finite normal mixtures-based

PMLEs in Amengual, Fiorentini and Sentana (2021b).

3 Specification tests based on integer product moments

3.1 The influence functions

As we have stressed earlier, the parametric identification of the structural shocks e} (8) and
their impact coefficients C that appear in the SVAR (2) critically hinges on the validity of the
identifying Assumption 1. As a consequence, it would be desirable that empirical researchers
estimating those models reported specification tests that would check those assumptions. Given

6 we focus on

that rank failures in C will be inextricably linked to singular dynamic systems,
testing that at most one of the structural shocks is Gaussian and that all the structural shocks
are indeed independent of each other.

As is well known, stochastic independence between the elements of a random vector is equiv-

The rationale is as follows. If rank(Co) < N, then rank[V (y:)] < N, and the same will be true of the sample
covariance matrix. Therefore, sampling variability plays no role in determining whether rank(Co) = N in model
(1). Exactly the same argument applies to the dynamic system (2).



alent to the joint distribution being the product of the marginal ones. In turn, this factorisation
implies lack of correlation between not only the levels but also any set of single-variable measur-
able transformations of those elements. Thus, a rather intuitive way of testing for independence
without considering any specific parametric alternative can be based on individual moment

conditions of the form N N
mule;(0)] = [[ i (0) — [[ Ele; (60)], (14)
i=1 i=1

where h ={hy, ..., hx}, with h; € Zg4, denotes the index vector characterising a specific product
moment. While the influence function in (14) will generally require the estimation of E [ejthi (6o)]
for some of the shocks, the constant term Hi\il E [sfth"’(eg)] is either 0 or 1 for the second, third
and fourth cross-moments we study in this paper in view of the standardised nature of the
shocks, so we do not need to worry about it. Amengual, Fiorentini and Sentana (2021b) discuss
in detail how to deal with the estimation of the required E [z—:;‘th"(ao)] in the general case.
Although we have motivated (14) as the basis for our tests of independence, by setting all
the elements of h but one to 0, we can also use this expression to look at the marginal moments
of a single shock. In this paper, we focus on h; = 3 and 4 because most common departures from
normality of the shocks will be reflected in coefficients of skewness or kurtosis different from 0

and 3, respectively.

3.2 The moment tests

Let m[e}(0)] denote a K x 1 vector containing a collection of influence functions my,x[e} (0)]
of the form (14) for different index vectors h',... h* ... h¥. The following result, which
specialises the general expressions in Newey (1985) and Tauchen (1985) to our context, derives
the asymptotic distribution of the scaled sample average of m[e}(@)] when we evaluate the

structural shocks at the PMLEs 67 rather than at 6y:

Proposition 1 Under Assumption 1 and standard regularity conditions

\g—‘T Zj:l m[sf(@T)] - N[O’ W((poo’ SOO)]a

where

+‘7:(¢ooﬂ c100)"4_1(¢c>07 UO)jI(¢oo; QOO) + j(¢oo? (PO)A_l(q')oo; ¢O)fl(¢oov 900)7

V(g;¢) =V {mle;(0)] ¢},

7601 =5 { 20 o},
F(; ) = cov { (%lg:(g,(e)]j S¢t(¢)‘ <p}



and A(poo; o) and B(poo; po) are defined in (12) and (13), respectively.

In the next subsections, we provide detailed expressions for V(¢; @), J(¢; ) and F(¢; )
which exploit that the true shocks are cross-sectionally and serially independent under the null

hypothesis of correct specification of the static ICA model (1) or the dynamic SVAR model (2).
3.2.1 Covariance across influence functions

Consider a generic element of the matrix cov{ml[e;(0)], m’[e}(0)]|p}, say

cov{mun[e; (0)], mu[e; (0)llp} = E{mnle; (0)mw[e; ()|} — E{mnle; (0)]¢} E{mw[e7(0)]|¢}-

If we exploit the cross-sectional independence of the shocks under the null hypothesis, which

implies that at the true values

we obtain

* * N *(hi+h
cov{mn[e7(80)],ma e 00)] o} = [, B [e1" ] -
3.2.2 The expected Jacobian

Straightforward application of the chain rule implies that

Omnle;(0)] _ Omnle; (0)] Oe:(0)
0¢ O¢’ oo

On this basis, the following proposition characterises the expected Jacobian matrix for any h:

Proposition 2 Suppose that model (2) satisfies Assumption 1. Then, the expected Jacobian
matriz of my[e}(0)] evaluated at the true values is given by

o g SO ] o) ]
Thay (@ise: 0) = B [8mha[i,(00)] 86;51?0) } =-E [%lgi,(eoﬂ ‘Po] [E(yi-] o) ® Cy']
and

o) [ O | (000 g o]

As for Omy[ef(0)]/0e, if we denote all the distinct second, third and fourth moments by

m®[e;(0)] Dy[e;(0) @ €7(0)]
mle;(0)] = | m@e;(0)] | = Tnl[ei(0) ®€t( ) ®e(0)] : (16)
m%[e;(0)] QN[EZ‘(‘)) ® e (0) ©e;(0) ® € (9)]



where Dy, T and Qp are the duplication, triplication and quadruplication matrices, respec-
tively (see Meijer (2005) for details), the results we derive in Appendix B.1 provide an easy way

to compute all those derivatives recursively.

3.2.3 The covariance with the score

Let €5 denote a vector of N ones and I(.) the usual indicator function. The following
proposition provides the last ingredient of the adjusted covariance matrix in Proposition 1.
Proposition 3 Suppose that model (2) satisfies Assumption 1. Then, the covariance between

the influence function my(-) and the pseudo log-likelihood scores evaluated at the (pseudo) true
values is given by

cov{m[e;(00)]; 8¢:(Pc0)|Po} = Fh(Poo P0) = ElThi(Poos Po)l; (17)

where
Fi(@o0r V0) Z;,(60)

0
fht(¢ooa ‘PO) = fh5<gooa UO) le(eo) 0 )
Fhr(Qoos V0) 0 I

Fhi(0oos Po) s a 1 X N wvector whose entries are such that for any i with h; > 0,

Fhl(z’)(Qom<P0) = —cov {mh[st (09)], fl 52*0) ] ‘900}

and zero otherwise, Fns(0o0,Po) i a 1 X N? vector whose entries are such that for any i with
h; >0 and i" with hy >0
900}

Ol £I=1(60)s i) ,
ool o0

Fhs(i,i’)(@oov 900) = —cCov {mh[s?(eo)], [(2 = Z,>
and zero otherwise, and finally

th<Qooa ‘PO) = Filr(d)om ‘PO)EN,

with Fnr(0s, Yo) another block diagonal matriz of order N x q with typical block of size 1 X ¢,

Fhr(i) (@0, V0) = COU {mh[s;"(oo)], Jln f[s%(;()); Qioo) ' Wo}

and zero otherwise.

4 Particular cases

4.1 Testing normality

As we have mentioned before, we can use (14) to test the null hypothesis that a single
structural shock is Gaussian by comparing its third and fourth sample moments with 0 and
3, respectively, which are the population values of those moments under the null of normality.

Nevertheless, many authors (see, e.g., Bontemps and Meddahi (2005) and the references therein)



convincingly argue that it is generally more appropriate to look at the sample averages of the
third and fourth Hermite polynomials instead. In particular, one should consider Hz(e},) =
e} — 3¢k and Hy(el) = et — 637 + 3 rather than €7 and ! only. The reason is that Hermite

polynomials have two main advantages. First, given that

OH3(e3) _ ) OHa(c})
T = 3H2(€it) and T

3 3

= 4H3(€');t)7

the results in Proposition 2 immediately imply that their expected Jacobians will be 0 under
the null of normality, so they are immune to the sampling uncertainty resulting from using
estimated shocks. Second, Hs(e},) and Hy(c};) are orthogonal under the Gaussian null, which
means that the joint test is simply the sum of two asymptotically independent components: one
for skewness and another one for kurtosis.

The properties of the estimators that we use, though, mean that the usual implementation
of the Jarque and Bera (1980) test, which simply looks at the sample averages of X (9T) and
ejf(@T), yields numerically the same statistics as the tests based on the Hermite polynomials
despite the fact that it ignores the terms involving €}, and 52}2. The intuition is as follows.
Proposition 1 in Fiorentini and Sentana (2020) states that the PMLEs of the unconditional mean
and variance of a univariate finite mixture of normals numerically coincide with the sample mean
and variance (with denominator ") of the observed series. Given that the log-likelihood function
(4) for any given values of a and j is effectively the sum of N such univariate log-likelihoods

with parameters that are variation-free, the estimated shocks will be such that

%Z; e3(B7) =0 and %Z; 2@ —1=0 Vi (18)
regardless of the sample size. This property also has interesting implications for the independence
tests that we will consider in the next section because, in effect, each estimated shock will be
standardised in the sample.

Finally, it is important to emphasise that the non-normality of a single shock does not
guarantee the identification of the model parameters, in the same way as its normality does not
imply they are underidentified. As we shall see in the Monte Carlo section, though, researchers
can get an informative guide to the validity of Assumption 1 by looking at the normality tests

for all the individual shocks.

4.2 Testing independence

At first sight, the arguments in the previous section might suggest that the sample covari-

ances between the estimated shocks will also be 0 by construction. However, this is not generally

10



true. The finite normal mixture PMLEs guarantee the univariate standardisation of each shock,
but it does not imply their orthogonality in any given sample, unlike what would happen with a
Gaussian likelihood function in which enough a priori restrictions were imposed on C to render
the model exactly identified. Intuitively, the parameter values that maximise (4) are trying
to make the estimated shocks stochastically independent, not merely orthogonal (see Herwartz
(2018)).
For that reason, the first test for independence that we consider will be based on the second
cross-moment condition
E(ehej) =0, i #4 (19)

th esti-

In other words, we are simply assessing if the sample correlation between the i** and 4
mated shocks is significantly different from zero in the usual statistical sense.
Nevertheless, we can also go beyond linear dependence, and look at moments that charac-

terise the co-skewness across the structural shocks. These can be of two types:
E(eiteq,) — E(e)E(e) = E(eitel,) =0, i #7, (20)
and
E(eheinein) — E(eh) E(el)E(eim) = E(heiem) =0, i £ i #1i", (21)

depending on whether they involve two or three different shocks.
Finally, we can also look at the different co-kurtosis among the shocks, which may involve a

pair of shocks, namely

E(eifei) — E(ei)E(ef}) = E(eifeis) —1 =0, i # 4, (22)
and
E(eifer,) — E(ei)E(ey) = E(ejfey,) =0, i #1, (23)
three shocks
E(eikehein) — B(e2)E(eh)E(eh,) = B(eifeheh,) =0, i i #i", (24)

and even four shocks
E(S:tg;tgj"tg'?’”t> — E(grt)E(E:’t)E(E;’t)E(E?’”t) = E<€:t€:’t8:”t€;”t) = O,Z 7& 7;I 7é i/, 7é Z.”/. (25)

Thus, we substantially expand the set of moments researchers can use to test for the inde-
pendence of the components relative to Hyvirinen (2013), who only suggested looking at the

co-kurtosis terms in (22). The above moment conditions also augment those considered by Lanne

11



and Luoto (2021), who focus on (19), (22) and (23), together with F(e},) = 0 and E(¢}?) = 1.

4.2.1 Covariance across influence functions

Next, we derive in detail the non-zero elements of the covariance matrix of the second, third
and fourth moments in (16).
It is easy to see that under the null hypothesis of independence, the only non-zero elements

of the covariance matrix of m[e; ()] are
Vienei) = 1.
In turn, in the case of m®[e}(0)] and m* [} ()], the non-zero elements are

V(eheineim) = 1,
*2 % _ *4
Vieirei) = Elei),

cov(eiei, eliter) = Bl )E(Eh),

and

V(eheimemeim) = 1,
V(i e} Eme) = E(gﬁl)
(5;}35*%) = E(ei‘f")’
V(eitein) = BB - 1,

COU(5zt25 E e 5z't51t5 ) = E(ei’f’)E(ef/?%),
00”(5:1535*%7 Eit € 't) = E(gft‘:’)E(ef,?Z),
cov(eif e eiiei) = EB(ef)B(efh),

CO”(fthE E it 5z't€zt5wt) = E(ﬁtg)E(E;ﬁ):
cov(eifeii eifein) = Blef) — 1,

cov(eilehn, eite,) = 1,

respectively, which can be consistently estimated from e} (@T) under standard regularity condi-
tions.

Finally, the non-zero covariance terms across the different elements of m (e} ), m®(ef) and

12



m< (g}) are

- *3
cov(EEry, Eif 2c? ) = E(ey),
- E *4
cov(elein, €5 3 ) = € ),
( * - E *3 E( *3)
cov(ejEin, €t €)= Eit Eirt)s

cov(efPel,, eiles

*3 _k

cov(elteh, el 3YE(ek}), and

*2 _k
cov(eifen,, i 2% o

7
t)
)
7

4.2.2 The expected Jacobian

Straightforward calculations allow us to show that the expected Jacobian of the covariances

across shocks in (19) will be given by

JhT(Qioov(pO) =0, Jhak(giooﬂ 900) =0 and Jhc(gioov‘pﬁ) = _(e;’ ® C%)) - (e; ® Cé'),

where e; is the " canonical vector and ¢ denotes the i*" row of C~1.

Analogously, for the third cross-moments in (20), we will have
Thr(@iser P0) = —C4's Thag(@icor P0) = —[E(Yi_ilp0) @€y ] and Jne(@ioc, 0) = —E(e})(efeh ),
while for those in (21) we get

Thr(Qicor P0) = 0, Jhay (Qicos Po) = 0 and Jne(@jo0, o) = 0
In turn, for the fourth moments in (22), we will have
Thr (@ioos £0) = 0, Thay (@joos P0) = 0 and Jne(@j00: P0) = —2(€] @ cf + € @ cf),
while for (23) we get
Ihr(@ies P0) = —E(57)hs Inay (@ioes P0) = —E () [E(Yi_ilpo) ® cf]

and
The(@iso: P0) = —3(€}y ® c§) — E(e) (e} ® cf).

Similarly, the expected Jacobian of (24) involves

Ihr(@inos P0) = 05 Jna, (Cico> P0) = 0 and Jne(Qj00; o) = —(€7 @ ch ) — (e ®chy).
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Finally, when we look at (25), we unsurprisingly end up with

JhT(Qz'om 900) = Ov Jhak(gioo’ 900) =0 and Jhc(Qioo? 900) =0.
4.2.3 The covariance with the score

As we have seen before, we need to explicitly compute the expressions in Proposition 3 to
obtain (17). Fortunately, some of those expressions simplify considerably for the cross-moments
we use to test independence. Intuitively, the reason is that the independence of the shocks

implies that when h is such that h; = 1, we will have

¥ it it
Oe;

and

9" it€ire €y it it
K

E [alnf(eit;gioo) w _*¥hy *hi”:| — —E( *hi’)E( *hi”)

for i #',i".

As a result, (17) will be zero for the second moments E(e};c},,), except for Fyy; i1 (Qioer Po)
which will be 1 when ¢’ # 1.

In addition, if we exploit the independence between i and ' and the fact that F (5:‘,%) =1,
we can easily prove that the only non-zero covariance elements for the co-skewness influence

functions E(e}e},) will be

8lnf(5:agzoo) * *
Fhl(i’)(@oov‘PO) =1, Fhs(iﬂ")(gooa ‘PO) =-F |:88§<€it2 ) Fhs(i’7i)(goo7‘100) = E(gitg))v

i

Oln f(e7; @ico) 4 OIn f(7;; @ico) »
Fhs(ilvil)(goo> SOO) =-F |: 6lf = Ei’%‘/ and Fhr(i’)(goo7U0) =F (6”/ ZOO)git ’
52'/ QZ
while all of them are zero for E(e},ef,€%,).

Similarly, we can also prove that for the co-kurtosis influence functions E (effe;",%), the only

non-zero terms are

Fhl(i)(gooa (PO) =-F |:(a€i)51t2:| ) FhS(iJ)(Qoo?‘hoO) =-1-F |:(agi)€it3 s

)

N 0ln (€54 Qioo) « Oln f(e};; 0i00) «
Fhs(i1) (@ocs 0) = — B (e} E |:f5987;)5it2:| and Fry(i1) (Qoor Vo) = B [fggﬁ)%] :

)

In turn, we end up with

Fri(ir) (@oo Po) = E(%E)? Fhs(i,i’)(Qooa‘PO) =—-F [&iwgiﬁ )

7
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* * 8111f(€:, ;Qi/oo) *
Fhs(i’,i)(gooa Po = E(Ei;l)7 Fhs(i’,i’)(gooa $o) = _E[Eitg]E { asi z"2t

and

* 8ln E;k/’ i 0 .
Fhr(i/)@wvo):E(eif)E[ S (b @uoo) ]

‘L
00, !

for the covariances of the co-kurtosis terms F (E;f&;-k/t

) with the scores.
In contrast, the only non-zero covariance of the co-kurtosis influence functions E(e},e},e57,)
with the scores will be Fry(; i) (0c0s o) = 1 when i # 4.

Finally, all the covariances of the scores with E(ele,el,e%,,) will be 0 too.

4.3 Combining our tests

Interestingly, we can use the expressions previously derived to prove that under the joint
null hypothesis of mutually independent shocks and the normality of one of them, the two
separate tests that we have discussed in sections 4.1 and 4.2 are asymptotically independent, so
effectively the joint test would simply be the sum of those two components.

In addition, we can also prove that a test that jointly assessed the independence and normality
of all the shocks would be asymptotically equivalent under the null to a multivariate Hermite-
based test of multivariate normality (see Amengual, Fiorentini and Sentana (2021a)) applied to
the reduced form residuals once one eliminates the moment condition related to the covariance
of the shocks, whose asymptotic variance when evaluated at the PMLEs would be zero under

the null.

5 Monte Carlo analysis

In this section, we assess the finite sample size and power of the normality and independence
tests discussed in sections 4.1 and 4.2 by means of several Monte Carlo simulation exercises. In
addition, we provide some evidence on the effects that dependence across shocks induces on the

estimators of the impact multipliers.

5.1 Design and computational details

For the sake of brevity, we focus on the bivariate case in the main text.” Specifically, we

generate samples of size T from the following bivariate static process

<y1t>:(ﬁ>+<cn 012)<€zt> (26)
Y2t T2 C21 €22 N

with 71 =1, 79 = =1, ¢11 = 1, ¢12 = .5, ca1 = 0 and cy2 = 2. However, our PML estimation pro-

cedure does not exploit the restriction that the loading matrix of the shocks is upper triangular.

"Nevertheless, we include simulation results for a trivariate model in Appendix C.

15



Importantly, given that we can easily prove from (4) that the estimated shocks are numerically
invariant to affine transformations of the y’s, and that the same is true of the different test
statistics, the results that we report below do not depend on our choice of 7 and C.

We consider both 7' = 250, which is realistic in most macro applications with monthly or
quarterly data, and 7" = 1,000, which is representative of financial applications with daily data.

The precise DGPs we consider for the shocks are described in section 5.1.2.

5.1.1 Estimation details

To estimate the parameters of the model above, we assume that €], and €3, follow two
serially and cross-sectionally independent standardised discrete mixture of two normals, or €}, ~

DM N (65, 72, \;) for short, so that

« _ | Nlui(e;),07%(0;)] with probability A; @)
St =\ Nlps(e:), 052 (e,)] with probability 1— ),
with
pile;) = 6:(1—N\),
p3(e) = —diNi,
1= N\(1—\)o?

*2 _ J (]

01 (Qz) - )\z n (1 _ )\z)%z )

032 (0;) = ot (@),

and g; = (0;, 75, \;)’. Hence, we can interpret s; as the ratio of the two variances and J; as the
parameter that regulates the distance between the means of the two underlying components.®
As a consequence, the contribution of observation ¢ to the pseudo log-likelihood function (4)

will be

Ui (0); 0] = In{; - Gl (0); 11 (i), o1 (@0)] + (1 = No) - Blefe(0); 13 (), 057 (20)]},

where ¢(e; 11, 0%) denotes the probability density function of a Gaussian random variable with
mean j and variance o2 evaluated at €. Importantly, we maximise the log-likelihood with respect
to the two elements of 7, the four elements of C and the six shape parameters subject to the
nonlinear constraint §? < )\i_l(l — X)L, which we impose to guarantee the strict positivity
of 03%(p;). Without loss of generality, we also restrict 5 € (0,1] as a way of labelling the

components, which in turn ensures the strict positivity of 032(91). Finally, we impose A; € (0,1)

8We can trivially extend this procedure to three or more components if we replace the normal random variable
in the first branch of (27) by a k-component normal mixture with mean and variance given by u} (@) and o32(0),
respectively, so that the resulting random variable will be a (k + 1)-component Gaussian mixture with zero mean
and unit variance.
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to avoid degenerate mixtures.”

We maximise the log-likelihood subject to these three constraints on the shape parameters
using a derivative-based quasi-Newton algorithm, which converges quadratically in the neigh-
bourhood of the optimum. To exploit this property, we start the iterations by obtaining consis-
tent initial estimators of 7 and C, Trrc4 and Crrca say, using the FastICA algorithm of Givert,
Hurri, Sireld, and Hyviirinen.'? In addition, we obtain initial values of the shape parameters
of each shock by performing 20 iterations'! of the expectation maximisation (EM) algorithm in
Dempster, Laird and Rubin (1977) on each of the elements of €} ;o4 = GE}CA (Yt — TricA).

As we mentioned in section 2.2, Assumption 1 only guarantees the identification of C up
to sign changes and column permutations. Although in empirical applications a researcher
would carefully chose the appropriate ordering and interpretation of the structural shocks, this
leeway may have severe consequences when analysing Monte Carlo results. For that reason, we
systematically choose a unique global maximum from the different observationally equivalent
permutations and sign changes of the columns of the matrix C using the selection procedure
suggested by Ilmonen and Paindaveine (2011) and adopted by Lanne, Meitz and Saikkonen
(2017). In addition, we impose that diag(C) is positive by simply changing the sign of all the
elements of the relevant columns. Naturally, we apply the same changes to the shape parameters

estimates and the sign of ¢;.

5.1.2 DGPs under the null and the alternative

The four bivariate DGPs for the standardised shocks that we consider under the null of

independence are:

DGP 1: A normal distribution and a discrete mixture of two normals with kurtosis coefficient 4 and

skewness coefficients equal to —.5, i.e. €], ~ N(0,1) and e}, ~ DM N(—.859,.386,1/5).
DGP 1D: The VAR(1) model
(2)- (202 1) () (2 2)(5)
— + + L
Yot T2 0 1/3 Yor—1 c21 €22 €5y
1.12

with exactly the same shocks and values of 7 and C as in DGP

DCP 2: Independent discrete mixtures of two normals with kurtosis coefficient 4 and skewness

Specifically, we impose s; € [3, 1] with 3 = .0001, and \; € [\, A] with A = 2/T and A =1 — 2/T.

10See Hyviirinen (1999) and https://research.ics.aalto.fi/ica/fastica/ for details on the FastICA package.

1 As is well known, the EM algorithm progresses very quickly in early iterations but tends to slow down
significantly as it gets close to the optimum. After some experimentation, we found that 20 iterations achieves
the right balance between CPU time and convergence of the parameters.

12Given that Monte Carlo simulations involving a regular bootstrap are very costly in terms of CPU time, we
have only compared the results of a VAR(1) with those of a static model for DGP 1.
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coefficients equal to .5 and —.5, respectively. In other words, £5, ~ DM N (—.859,.386,1/5)
and &, ~ DM N(.859,.386,1/5).

DGP 3: A Student ¢ with 10 degrees of freedom (and kurtosis coefficient equal to 4), and an
asymmetric ¢ with kurtosis and skewness coefficients equal to 4 and —.5, respectively, so

that § = —1.354 and v = 18.718 in the notation of Mencia and Sentana (2012).

The left panels of Figures la—c display the density functions of these distributions over a
range of +4 standard deviations with the standard normal as a benchmark, while the right
panels zoom in on the left-tail.

In turn, under the alternative of cross-sectionally dependent shocks we simulate from the

following three standardised joint distributions:

DCP 4: Bivariate Student ¢ with 6 degrees of freedom.

DGP 5: Bivariate asymmetric ¢t with skewness vector 3 = —5€5 and degrees of freedom parameter

v =16 (see Mencia and Sentana (2012) for details).

DGP 6: Bivariate mixture of two zero-mean normal vectors with covariance matrices

(Y4 a(l— )] 0
Ql_( 0 1/[A + se2(1 — A)] )

Q. — s /[N + (1 — N)] 0
2 0 s/ AN+ (1l =N)] )’
which we denote by DM Ny (5,02, )\) (see Lanne and Liitkepohl (2010) for details).
Specifically, we set s1; = 0.1, 3.0 = 0.2 and A = 1/5.

The left panels of Figures 2 display the joint densities for these distributions, while their
contours are presented in the right panels.

To gauge the finite sample size and power of our proposed independence tests, we generate
20, 000 samples for each of the designs under the null and 5,000 for those under the alternative.
Additionally, we evaluate the small sample size and power of the normality tests presented in
section 4.1 using the results from the simulation designs bGP 1 and 1D (null), and bGP 2 and

DCP 3 (alternative).

5.1.3 Bootstrap procedures

The theoretical results in Beran (1988) imply that if the usual Gaussian asymptotic approx-
imation provides a reliable guide to the finite sample distribution of the sample version of the

moments being tested, the bootstrapped critical values should not only be valid, but also their
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errors should be of a lower order of magnitude under additional regularity conditions that guar-
antee the validity of a higher-order Edgeworth expansion.'® For that reason, we also analyse the
performance of applying the bootstrap to the testing procedures we have described in sections
4.1 and 4.2.

In the case of our tests for independence, for each Monte Carlo sample, we can easily generate
another Ny, bootstrap samples of size T' that impose the null with probability approaching 1 as
T increases as follows.!* First, we generate NT' draws R;s from a discrete uniform distribution

between 1 and T', which we then use to construct

~ ~ A~k
ys =71+ Crég,

~

where &}, = &/, and & = ef(fr) = C;! (yi — #7) are the estimated residuals in any given
sample.

As for the normality tests, whose null hypothesis is that a single shock ¢}, is Gaussian, we
adopt a partially parametric resampling scheme in which the draws of the " shock gy, are
independently simulated from a N(0,1) distribution while the draws for the remaining shocks
€} (k # 1) are obtained nonparametrically as in the previous paragraph.

Although these bootstrap procedures are simple and fast for any given sample, they quickly
become prohibitively expensive in a Monte Carlo exercise as T increases. For this reason, for
the designs with 7' = 1,000 we rely on the warp-speed method of Giacomini, Politis and White
(2013).

5.2 Simulation results

5.2.1 Testing normality

Table 1 reports Monte Carlo rejection rates of the normality tests proposed in section 4.1
for DGP 1, 1D, 2 and 3. As can be seen, the null of normality is correctly rejected a large number
of times when it does not hold, even in samples of length 250. The only possible exception is the

skewness component of the Jarque-Bera test when applied to the symmetric Student ¢ shock in

13Therefore, if the true shocks had unbounded variance, the bootstrap would not work, but neither would the
asymptotic approximation.
1To see this, notice that under the null,

N

N ~*74 «Ji
E (Hz‘:1 &l ) ¥ Bleia),

while under the alternative,

N N T —17oN i1 N
~*J7/ _ *7J7 *.]7/
B (Hi:I Cis ) T i=1 Beis ) + fE (Hi:1 Cis )

where the second term in the right hand side accounts for the probability of sampling contemporaneous residuals
in a sample of size T'. Clearly, the second expression converges to the first one as T' goes to infinity.
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DCP 3. Given that the population third moment is zero in this case, the only source of power is
the fact that the sample variability of Hg is larger for this shock than its theoretical value under
Gaussianity.

On the other hand, the first three rows of the panels DGP 1 and 1D, which are the ones with a
Gaussian shock, show that the normality tests tend to be oversized at the usual nominal levels,
especially for samples of length 250.'° For that reason, we generate Npoo = 399 bootstrap
samples at each Monte Carlo replication, as described in section 5.1.3. Table 2 shows that the
standard bootstrap version of our tests is pretty accurate for both the third and fourth moment
tests. Unlike what we observed in Table 1, though, the size-adjusted power is slightly lower for
DGP 1D than for pGp 1.

However, as mentioned at the end of section 4.1, researches may only get a reliable guide to
the validity of Assumption 1 by looking at the normality tests for all the individual shocks, the
objective being to get at least N — 1 rejections. To shed some light on this issue, in Table 3 we
report contingency tables which fully characterise the extent to which simultaneous rejections
of the individual normality tests occur. As can be seen, our proposed normality tests tend to

be rather informative when used in this way.

5.2.2 Testing independence

In Tables 4 (T' = 250) and 5 (T = 1,000) we report the Monte Carlo rejection rates of the
tests we have proposed in section 4.2 under the null of independence. Specifically, we look at the
second, third and fourth moment individual tests in m®[e}(8)], m*[e;(6)] and m*[e}(0)], and
also at the joint tests for the two co-skewness moments, the three co-kurtosis moments, and the
combined six moments, including the correlation between the shocks. The left panels of those
tables report rejection rates using asymptotic critical values, while the right panels show the
bootstrap-based ones for T' = 250 and the warp-speed bootstrap-based ones for T = 1, 000.16

We can see in Table 4 some small to moderate finite sample size distortion when T = 250,
although in several cases they are corrected by the bootstrap. The only exceptions seem to
be bGP 1 and 1D, in which some small distortions remain even with this procedure. Given
that in these designs there is only one non-Gaussian shock, a plausible explanation is that the
identification of C may be weaker, a conjecture we will revisit in the next section. For the other
DGPs, the results in Table 4 clearly show that the usual bootstrap version of the tests, which is

the relevant one in empirical applications, has much better size properties.

15 Given 20,000 Monte Carlo replications, the 95% asymptotic confidence intervals for the Monte Carlo rejection
probabilities under the null are (.86,1.14), (4.70,5.30) and (9.58,10.42) at the 1, 5 and 10% levels, respectively.

'SAll our i.i.d. designs are such that the individual moment tests converge in distribution to a x> random
variable, and the joint ones to xg, X§ and xé variables, respectively.
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As can be seen in Table 5, finite sample sizes improve considerably for 7' = 1,000. Indeed,
the bootstrap versions of the tests seem unnecessary for this sample size because the empirical
rejection rates based on asymptotic critical values become generally very close to the nominal
ones, though the warp-speed version performs comparably well.

Next, we assess the power of the independence tests for T = 250 and 1" = 1,000 in Tables 6
and 7, respectively. In this respect, we find that the power of our tests against DGP 4 is disap-
pointingly low. A possible explanation is that when the true joint distribution is a symmetric
Student ¢, the dependence between the components is mostly visible in the tails of the distrib-
ution. On the other hand, power is mostly coming from the co-skewness component (20) in the
case of the joint asymmetric ¢. Still, the test based on the covariance of the shocks (19) is also
very powerful. Finally, the co-kurtosis test based on (22) is the most powerful single moment
test under the Lanne and Liitkepohl (2010) alternative in DGP 6, with the joint tests that include
this moment inheriting its power. Nevertheless, the test based on the second moment (19) also
has non-negligible power for this design.

In summary, although the rejection rates naturally depend on the type of departure from the
null and the specific influence function used for testing, the joint test that considers all moments

at once seems to be a winner regardless of the sample size.

5.3 Structural parameters estimates

Table 8 reports summary statistics for the Monte Carlo distribution of the PMLESs of the
structural parameters. The first thing we would like to highlight is when one of the shocks is
Gaussian, the sampling variability and the finite sample bias are noticeably larger than when
both shocks are non-Gaussian but independent, which is in line with the conjecture we expressed
in the previous section. Still, even in that case the biases are usually small and often negligible.
In addition, the Monte Carlo standard deviations of the estimators in Panel B are roughly half
those in Panel A, as one would expect.

The situation is completely different when the true shocks are cross-sectionally dependent.
Failure of condition 2 in the Assumption 1 results into significant biases, mostly in the off-
diagonal terms of the impact multiplier matrix. In fact, the Monte Carlo variance of these
estimators seems to increase with the sample size. In this respect, it is important to remember
that the elements of the C matrix are no longer point identified when the joint distribution of
the true shocks is either a symmetric or asymmetric Student ¢. This is confirmed by the fact
that the bias of the estimators is lower for DGP 6, in which the rotations of the shocks are not

observationally equivalent (see Lanne and Liitkepohl (2010)).
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6 Conclusions and directions for further research

Given that the parametric identification of the structural shocks and their impact coefficients
C in the SVAR (2) critically hinges on the validity of the identifying restrictions in Assumption 1,
it would be desirable that empirical researchers estimating those models reported specification
tests that checked those assumptions to increase the empirical credibility of their findings. For
that reason, in this paper we propose simple specification tests for independent component
analysis and structural vector autoregressions with non-Gaussian shocks that check the normality
of a single shock and the potential cross-sectional dependence among several of them. Our
tests compare the integer (product) moments of the shocks in the sample with their population
counterparts. Importantly, we explicitly consider the sampling variability resulting from using
shocks computed with consistent parameter estimators. We study the finite sample size of our
tests in several simulation exercises and discuss some bootstrap procedures. We also show that
our tests have non-negligible power against a variety of empirically plausible alternatives.

As we mentioned in the introduction, there are many estimators for the parameters of the
static IcA model (1) in addition to the discrete mixture of normals-based PMLEs we have
considered in this paper. For example, even within the same likelihood framework, Fiorentini
and Sentana (2020) discuss two other consistent estimators of the conditional mean and variance

parameters of the SVAR in (2):

1. The two-step procedure of Gouriéroux, Monfort and Renne (2017), which first estimates
the reduced form parameters 7, a and o, = vec(X1) by equation-by-equation OLS, and
then the N(N — 1)/2 free elements w of the orthogonal rotation matrix Q in (3) mapping

structural shocks and reduced form innovations by non-Gaussian PML.

2. The two-step estimator in Fiorentini and Sentana (2019), which replaces the inconsistent
non-Gaussian PMLESs of 7 and v by the sample means and standard deviations of pseudo

standardised shocks computed using ar and jp.

Although the specifications tests that we have proposed in this paper could also be applied to
shocks computed on the basis of these alternative estimators, the asymptotic covariance matrices
that take into account their sampling variability will differ from the ones we have derived in this
paper. Given that some researchers may prefer to use one of those two-step estimation methods,
obtaining computationally simple expressions for the adjusted covariance matrix would provide
a valuable addition to our results.

In fact, the moment conditions that we consider for testing independence could form the basis

of a GMM estimation procedure for the model parameters 8 along the lines of Lanne and Luoto
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(2021), although with a larger set of third and fourth cross-moments. The overidentification
restrictions tests obtained as a by product of this procedure could be used as a specification test
of the assumed independence-like restrictions.

Our tests for normality tackle a single shock at a time. Although we could in principle simul-
taneously test the normality of two or more shocks by combining the corresponding normality
tests, the implicit joint null hypothesis would violate the second identification condition in As-
sumption 1. The asymptotic distribution of such joint tests constitutes a very interesting topic
for further research. In addition, we could formally study the limiting probability of finding
N — 1 rejections of the univariate normality tests in those circumstances.

Another important research topic would be the limiting behaviour of the PMLEs of 8 when
Assumption 1 does not hold, either because two or more of the shocks are Gaussian or because
they are not independent.

Finally, while the integer product moment tests for independence that we have considered are
very intuitive, they may have little power against alternatives in which the dependence is mostly
visible in certain regions of the domain of the random shocks. With this in mind, in Amengual,
Fiorentini and Sentana (2021b) we study moment tests that look at the product of non-linear
transformations of the shocks, such as I(ga; < €t < qui), where qo; and q,,; are the a and w
quantiles of the marginal distribution of the i** shock (with 0 < o < w < 1), or I(ky; < it < kui),
where kj; < ky; are some fixed values, or indeed €1 (k;; < €4 < ky;). Extending this approach
in such a way that it leads to a consistent test of independence constitutes another promising

research avenue.
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Table 1: Monte Carlo size and power of normality tests.

Asymptotic critical values
Sample size T = 250 Sample size T = 1,000
Nominal size 10% 5% 1% 10% 5% 1%

DGP 1 — Shocks: €], normal & €5, DMN

Hj(e7;) 13.58 7.70 2.45 11.03 5.96 1.32
Hy(e7,) 12.37 6.86 2.85 10.38 5.32 1.38
Hs(et,) & Hy(eh,) 13.03 8.17 3.67 10.56 5.76 1.67
H3(e3,) 83.40  77.93  64.27 99.93  99.88  99.50
Hy(e3,) 70.78  64.44  51.80 99.26  98.79  96.80
H3(eh,) & Hy(es,) 85.73  81.33  T71.52 99.95  99.94  99.90
DGP 1D VAR(1) — Shocks: €}, normal & ¢, DMN
Hj(e7,) 15.08 8.83 2.78 11.15 5.65 1.19
Hy(e3y) 13.28 7.47 2.94 10.82 5.62 1.50
Hs(et,) & Ha(eh,) 14.72 8.96 4.07 11.02 5.91 1.71
Hj(e5;) 82.51 7712  63.70 99.91  99.86  99.60
Hy(e3,) 70.17  63.90  51.70 99.29  98.73  96.84
Hj(eh,) & Hy(es,) 85.33  80.75  70.99 99.96  99.94  99.89
DGP 2 — Shocks: €], DMN & €3, DMN
Hj(e7,) 84.36 7873  64.33 99.88  99.81  99.39
Hy(e7,) 70.53  64.07  51.13 99.22  98.63  95.84
H3(et,) & Ha(eh,) 86.54  81.92  T1.58 99.98  99.95  99.77
Hj(e3,) 85.14  79.63  65.82 99.92  99.84  99.50
Hy(es;) 70.86  64.31  51.46 99.41  98.81  95.97
Hs(eh,) & Ha(eh,) 87.34 8288  72.26 100.00  99.98  99.82
DGP 3 — Shocks: €], asymmetric t & €5, Student ¢
Hj(e7;) 84.93  79.50  65.37 99.98  99.92  99.76
Hy(e7,) 58.58 5238 42.24 95.10  93.04  87.73
Hs(et,) & Ha(eh,) 82.72 7721 65.27 99.97  99.91  99.69
Hj(e3,) 33.97  25.62  14.52 36.43 2841  16.68
Hy(e3,) 60.68 5421  42.13 96.98 9535  90.70
H3(eh,) & Hy(es,) 60.83  54.14  42.38 95.77  93.85  88.56

Notes: Monte Carlo empirical rejection rates of normality tests; 20,000 replications. DMN denotes discrete
mixture of two normals. Details on the data generating processes: DGP 1 and 1D, €}, ~ N(0,1) and
g5 ~ DMN(—.859,.386,1/5); paP 2, e, ~ DM N(—.859,.386,1/5) and &5, ~ DM N(.859,.386,1/5);
and DGP 3, €7, ~ At(—1.354,18.718) and e, ~ t(10) (see Mencia and Sentana (2012) for details).
Asymptotic critical values: Hz(-) ~ x%, Hy(-) ~ x3 and H3(-) & Ha(:) ~ x3.
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Table 2: Monte Carlo size and power of normality tests with bootstrap: Sample size T' = 250.

Asymptotic critical Bootstrap (399 samples)
values critical values
Nominal size 10% 5% 1% 10% 5% 1%

DGP 1 — Shocks: €], normal & €5, DMN
Size (e}, normal)

Hj(e7y) 13.58 7.70 2.45 9.13 4.59 0.98

Hy(e7,) 12.37 6.86 2.85 9.46 4.80 1.18

Hs(e%,) & Hy(eh,) 13.03 8.17 3.67 9.31 4.70 1.22
Power (g3, DMN)

Hj(e3,) 83.40 7793 64.27 79.94 7333 55.47

Hy(e3y) 70.78 64.44  51.80 67.75 60.56  38.23

H3(e%,) & Hale},) 85.73 81.33 7152 82.76 75.81  53.79

DGP 1D VAR(1) — Shocks: €}, normal & ¢35, DMN
Size (e}, normal)

Hj(e}y) 15.08 8.83 2.80 9.36 4.50 0.91

Ha(e},) 13.28 7.47 2.94 9.22 4.47 1.10

Hs(e%,) & Hy(eh,) 14.72 8.96 4.07 8.90 4.31 1.04
Power (g5, DMN)

Hj(e3,) 82.51 7712 63.70 77.24 69.93  51.99

Hy(es,) 70.17 63.90  51.70 65.57 57.57  36.00

H3(e%,) & Hale},) 85.33 80.75  70.99 80.26 7273 50.63

Notes: Monte Carlo empirical rejection rates of normality tests; 20,000 replications. DMN denotes
discrete mixture of two normals. Data generated according to DGP 1 and DGP 1D, i.e. €f, ~ N(0,1) and
ey ~ DM N(—.859,.386,1/5). Testing for univariate normality of 3, provides size figures while doing
the same but with 3, delivers power measures. Asymptotic critical values: Hs(-) ~ x3 and Hy(-) ~ x3.
We present the asymptotic distribution of the test statistics in section 5.2.2 and describe the sampling
procedure we use to implement the bootstrap in section 5.1.3.
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Table 3: Contingency tables of the normality test based on Hz(e},) & Hu(e}).

Sample Size T' = 250
Bootstrap (399 samples)

Warp-speed bootstrap

*
€1¢

(Null)

£t
(Null)

*
€1¢

(Alt.)

*
€1¢

(Alt.)

Sample Size T' = 1,000

DGP 1 — Shocks: €], normal & €5, DMN

g5 (Alt.) g5, (Alt.)
Yes No Yes No
Yes 2.62 2.08  4.70 €l | Yes 5.01  0.04
No 7319 2211 95.380 (Null) | No 94.92 0.03
75.81  24.19 99.93  0.07
DGP 1D VAR(1) — Shocks: €}, normal & €3, DMN
g5, (Alt.) g5, (Alt.)
Yes No Yes No
Yes 227 2.04 4.31 €14 Yes 443  0.05
No 70.47 25.23 95.69 (Null) | No 9548 0.04
72.718  27.27 99.91  0.09
DGP 2 — Shocks: €], DMN & €5, DMN
g3 (Alt.) g5, (Alt.)
Yes No Yes No
Yes 55.89 1840 74.29 €]y | Yes 99.94  0.02
No 1897 6.74 25.71 (Alt.) | No 0.04 0.00
74.86  25.14 99.98  0.02
DGP 3 — Shocks: €], asymmetric t & €5, Student ¢
g5 (Alt.) g5, (Alt.)
Yes No Yes No
Yes 28.07 3451 62.58 el | Yes 9297  6.69
No 17.74 19.68 3742 (Alt.) | No 033 0.01

45.81  54.19 93.30  6.70

5.05
94.95

448
95.52

99.96
0.0/

99.66
0.34

Notes: Monte Carlo empirical rejection rates of normality tests; 20,000 replications.
to rejections of the Gaussian null. DMN denotes discrete mixture of two normals.

in section 5.1.3.
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Yes/No refers
Details on the
data generating processes: DGP 1 and 1D, €}, ~ N(0,1) and €5, ~ DMN(—.859,.386,1/5); DGP 2,
&%, ~ DMN(—.859,.386,1/5) and 5, ~ DM N(.859,.386,1/5); and DGP 3, &, ~ At(—1.354,18.718) and
g3, ~ t(10) (see Mencfa and Sentana (2012) for details). We describe the sampling procedure we use to
implement both the standard bootstrap and Giacomini, Politis and White (2013)’s warp-speed bootstrap
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Table 6: Monte Carlo power of independence moment tests: Sample size T = 250.

Asymptotic critical Bootstrap (399 samples)
values critical values
Nominal size 10% 5% 1% 10% 5% 1%

DGP 4 — Joint Student ¢

E(e1,e5;) 6.90 3.32 0.68 10.80 5.36 1.28
E(ef7es,) 9.80 5.10 1.10 11.42 6.16 1.22
E(e},637) 10.02 5.12 1.04 10.94 5.88 1.12
E(eites) 8.50 484 140 11.86  6.00 1.50
E(e},e57) 8.92 5.18 1.70 11.80 6.66 1.84
E(et2e52) 12.04 8.18 3.64 15.02 11.26 3.68
Co-skewness 9.98 5.06 1.26 11.64 5.60 1.38
Co-kurtosis 11.82 7.84 4.10 16.22 9.66 3.20
Joint test 11.80 8.08 4.44 15.12 9.32 3.34
DCP 5 — Joint asymmetric ¢
E(e1,e5;) 16.00 9.18 3.44 19.90 12.60 4.58
E(ei2e3,) 25.38  16.34 6.54 25.12 16.06 4.56
E(e},e32) 19.64  12.54 4.58 20.54  12.80 4.56
E(efles,) 14.46 9.68 3.52 16.94  11.02 3.56
E(e},33) 14.14 9.02 3.52 17.90 11.44 4.88
E(ei2e52) 15.42 10.84 5.60 18.80 13.16 5.12
Co-skewness 23.80 16.08 6.16 23.90 15.06 3.94
Co-kurtosis 16.56  11.82 5.98 21.20 13.70 5.50
Joint test 17.92 11.88 5.80 20.22 11.88 4.28
DGP 6 — Lanne and Liitkepohl (2010)’s mixture
E(e1,e5,) 3712 2850  15.64 39.78  29.00  14.76
E(ei2e3,) 25.26  17.34 7.80 26.44  18.16 6.50
E(et,e32) 28.00  20.26 9.50 29.44  20.22 7.54
E(efes,) 28.48  21.00  10.92 30.90  20.48 7.46
E(e},e57) 34.60 2626  15.26 36.22  25.14 9.14
E(ei2e52) 64.14 54.88  38.18 70.82 61.12  26.42
Co-skewness 33.16 24.48 13.32 35.06 23.58 7.72
Co-kurtosis 62.02  53.98  39.84 64.72 4934  20.26
Joint test 67.02  58.78  43.84 67.02 5242  22.28

Notes: Monte Carlo empirical rejection rates of independence tests; 5,000 replications. Details on
the data generating processes: DGP 4, joint (standardised) Student ¢: (ef,,€5,) ~ t(0,I2,6); DGP 5,
(e1,,65;) ~ At(0,I,—5€5,16) (see Mencfa and Sentana (2012) for details); and DGP 6, (ef,,€5;) ~
DMNyp(.1,.2,1/5) (see section 5.1.2 for details). We present the asymptotic distribution of the test
statistics in section 5.2.2 and describe the sampling procedure we use to implement Giacomini, Politis
and White (2013)’s warp-speed bootstrap in section 5.1.3.
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Table 7: Monte Carlo power of independence moment tests: Sample size T = 1, 000.

Asymptotic critical Warp-speed bootstrap
values critical values
Nominal size 10% 5% 1% 10% 5% 1%

DGP 4 — Joint Student ¢

E(e1,e5;) 1572 10.04 2.82 17.36  11.26 3.30
E(ei2e3,) 16.02 9.10 2.86 16.32 9.82 2.86
E(e},632) 15.74 9.44 2.90 15.98 9.74 3.18
E(efes,) 18.68  12.44 5.42 20.94  13.02 4.96
E(e},33) 19.30  12.42 4.94 20.14  12.78 4.48
E(et2e52) 54.78 44.52  27.08 57.74  46.76  26.12
Co-skewness 18.26 11.22 3.76 18.82 11.34 3.72
Co-kurtosis 46.92 3826  23.36 50.08  40.38  18.28
Joint test 4450 3536  21.40 48.50  37.06  16.22
DCP 5 — Joint asymmetric ¢
E(e1,e5;) 84.52  81.52  75.24 84.94  81.72 7414
E(ef7es;) 69.28  64.76  56.38 69.78  65.38  55.58
E(e},e57) 98.72  98.28  96.98 98.72  98.24  96.62
E(etjes,) 56.36  50.28  40.08 57.54  50.08  39.96
E(e}e57) 65.62  59.52  48.36 66.02  59.62  45.64
E(e32e32) 88.42  84.16  74.32 90.48  85.66  67.64
Co-skewness 100.00  100.00  99.90 100.00  100.00  99.78
Co-kurtosis 87.32  83.16  74.40 88.00  82.36  66.22
Joint test 100.00  99.94  99.58 100.00  99.94  98.42
DGP 6 — Lanne and Liitkepohl (2010)’s mixture
E(e1,e5) 58.22  51.60  39.84 59.78  52.52  39.84
E(et2e3) 29.00  20.16 9.72 29.88  20.50 9.12
E(e},e57) 33.28  24.64  12.68 32.74 2392 12.02
E(e5es,) 46.70  38.44  26.34 47.42 3776  23.24
E(e},e57) 55.76  48.12  34.64 57.80  48.02  28.78
E(ei2e52) 99.98 99.86  99.28 99.98 99.88  98.52
Co-skewness 40.46  30.70  16.82 40.76  29.68  14.82
Co-kurtosis 99.80  99.58  98.22 99.80  99.36  94.46
Joint test 99.48  99.08  97.64 99.42  98.68  92.22

Notes: Monte Carlo empirical rejection rates of independence tests; 5,000 replications. Details on
the data generating processes: DGP 4, joint (standardised) Student ¢: (e7,,€5,) ~ t(0,I2,6); DGP 5,
(e1,,65;) ~ At(0,I,—5€5,16) (see Mencfa and Sentana (2012) for details); and DGP 6, (ef,,€5;) ~
DMNyp(.1,.2,1/5) (see section 5.1.2 for details). We present the asymptotic distribution of the test
statistics in section 5.2.2 and describe the sampling procedure we use to implement Giacomini, Politis
and White (2013)’s warp-speed bootstrap in section 5.1.3.
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Figure 1: Univariate densities of the independent shocks

Figure la: Discrete location-scale mixture of normals
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Figure 1b: Symmetric Student
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Figure lc: Asymmetric ¢
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Notes: Dashed lines represent the standard normal distribution. Figure la plots a standardised discrete
mixture of two normals with skewness and kurtosis coefficients of —.5 and 4, respectively (with parameters
d = —.859, » = .386 and A = 1/5); Figure 1b plots a standardised symmetric Student ¢ with the same
kurtosis (i.e. 10 degrees of freedom); while Figure 1c plots a standardised asymmetric ¢ with skewness
and kurtosis as the one in Figure la (i.e. with 8 = —1.354 and v = 18.718, see Mencia and Sentana
(2012) for details).
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Figure 2: Densities and contours of the bivariate distributions under the alternative hypotheses

Figure 2a: Standardised Student ¢ density Figure 2b: Contours of a standardised Student
t density
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Figure 2¢: Standardised asymmetric ¢ density Figure 2d: Contours of a standardised asymmetric
t density
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Figure 2e: Standardised Lanne and Liitkepohl  Figure 2f: Contours of a standardised Lanne and

(2010)’s mixture of normals density Liitkepohl (2010)’s mixture of normals density
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Notes: Figures 2a—b plot a bivariate Student ¢ with 6 degrees of freedom; Figures 2c—d a standardised
bivariate asymmetric ¢ with 3 = —5£€y and v = 16 (see Mencia and Sentana (2012) for details); while
Figures le—f plot a standardised mixture of two bivariate normals with joint mixing Bernoulli with A = 1/5
and scale parameters s = .1 and s, = .2 (see section 5.1.2 and Lanne and Liitkepohl (2010) for details).
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Appendices
A Proofs

Proposition 1

Under standard regularity conditions (see e.g. Newey and McFadden (1994)), we can lin-
earise the vector of influence functions underlying our tests around g so that

T T

T
ﬁ;;m[ef(éﬂ] = \/le;met (80)] + VT (Br—85) + 0,(1)

1
T

T 1

t=

T
_ ﬁlzmst 00)] + T (boo; 00) VT (Br—00) + 0(1).
t=1

But since

T
VT(B1-60) = A (Docs pVT o D s0u(0) + (1),
t=1

we can combine both expressions to write

T T T
1 . _
TZ 1 ( 0T TTZm[Et (00)] + T (Pooi p0) A 1(¢oo§‘P0 Z t(o) + 0p(1),
=1 t=1 t=1
whence the asymptotic distribution in the proposition follows. O
Proposition 2
Fiorentini and Sentana (2021) prove in their Appendix D that
0e;(0) X
59/ = —{Z,,(6) + [e7'(0) ® In|Z, ()},
which in our case reduces to
Oe; (0 _
50(, ) = -C 1( Iy y£,1®IN yg,p®IN On w2 )
—[6:1(0)®1N](1N®Cil)( 0N2><N 0N2><N2 0N2><N2 IN2 )

in view of (7) and (8). Therefore, it immediately follows that

0ei(0) — ! and 9e7,(9) b

or'! or’

where

37



Similarly,

¢ (0) -1 927(0) i :
da =—(y;—;®C™") and 8;;. = —(y;_;®c") forj=1,..,p.
Finally,
0i0) _ vy ) and 1O _ _pevig) o i,

oc’

If we combine these expressions with the fact that

oc’

Omn(e; (0)]

we obtain the desired results. O

Proposition 3

The general expression (17) follows directly from the definition of the scores for 8 and g
in (5) and (6) and the law of iterated expectations after exploiting the fact that mpy[e}(6o)],
ei(ds), en(Po) and ey (@) are i.i.d. processes with zero mean under our assumptions.

In turn, the more detailed expressions exploit the cross-sectional independence of the shocks.
For example, consider

dIn f(el; 000) /0]

Fni(@s0, V0) = cov § my(€;), 00, v

Oln f(ehy; 000)/ Oy
It is clear that row ¢ will be zero if h; = 0 because of the cross-sectional independence of the
shocks and the fact that E[01In f(e}; 05 )/0c} |00, vo] = 0.

The same argument applies to the remaining blocks. O

B Additional material

B.1 Some useful results

As mentioned in section 3, the following lemma provides an easy way to recursively compute

some of the ingredients of the independence tests:

Lemma 1 Let [€](0)]%F = €}(0) ® €] (0) @ ... ® €5 (0) denote the k' order Kronecker power of

k times

the N x 1 vector €f(0). Then, for any k > 2

d{[e7(0)]%"} = {In @ [e] (0)]%F '} de} (0) + [€(0) ® Lyx—1]d{[e] (0)] "'}
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Proof. The result follows immediately from the product rule for differentials (see section 9.14

in Magnus and Neudecker (2019)) after exploiting the fact that Kiny = Kxn1 = Iy and

vec(Apmxn @Bpxg) = (In @ Ky @ I)[vec(Apxn) @ vec(Bpxg)]
= {L @ [(Kgm @ L) [Im @ vec(Bpxg)fvec(Amxn)
= Al @ Kgm)[vec(Amxn) @ 1] © Ip jvec(Bpxq), (B1)
(see section 3.7 in Magnus and Neudecker (2019)). O

A trivial — but useful — consequence of Lemma 1 that we make extensively use in this paper

is:

Corollary 1 The differentials of the second, third and fourth powers of the structural shocks

will be
dle; (0) @ €7(0)] = [In ® 7(0)]def (0) + [e7(0) ® In]de (0),
dle;(0) @ e;(0) @ e (0)] = [Iv ®e;(0) @ e;(0)]de (0)
+H[Iy2 ® €7(0)][e7(6) ® In]}dey (0)
+[e(0) ® €;(6) @ In]de; (0),
and
dle; (0) @ e (0) @ 7 (0) ® €7(0)] = [Iy ®e;(0) @ e[ (0) ® e;(0)]def

I} @ €7 (0) @ €7(0)][e7(0) ® In]} def (6)
+{[e7(0) ® €{(0) © Ln2][Iy © €7(0)] } de; ()
+[er () @ e4(0) © 7(8) © L] de; (0).

Proof. To save space, let ef = €;(0). The differential of m® (g}), d(ef ® €;), follows directly
from Lemma 1.

This lemma also implies that the differential of m®(e}) will be

dle; @ef®e;) = [d(ef @ef) @ef] + (ef ® ef ® dey)

= (def®@e; ®e))+ (ef @def ®ey) + (6] ® e; @ dey)
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Expression (B1) then yields

(deif @ef @er) = {(Kin @ Iy2)[Iy @ vec (ef ® &7)]fvec(dey)

= (Iy®e; ®ef)de],

(e; @dey @ep) = {(Kinz2 @ Iy)[Iy2 @ vec(ey)|vec(ey ® dey)
= [In2 ® vec(ey)|vec(e; @ dey)
= [Iy2 ®@vec(e;) {(1 @ Kin)[vec(ef) ® 1|vec(dey)

= [(In2 @ &7)(e; @ In)|de;
and

(ef @e; @dey) = {(1®Kiy2)vec(ef ® e}) @ 1] ® Iy }vec(dey)
= (et @&y @ In)dey
because K1y = Ky = In.
Finally, Lemma 1 implies that the differential of m(e}) will be
de;@e;Ref®e;) = [def ®e;®ep)Rel]+ (6] Ref ®e; ®@dey)
= (de;@e; @e @ep) + (6 ®dey ®ef ©&y)
+(e; ®ef ®de; ®ey) + (6] Vel ®ef ® dey).

Once again, expression (B1) yields

(def e e ®e;) = {1 (Kiy®@Iys)[Iy ®@vec(e; ® ef ® €;)|vec(dey)

= (In®e; ®e; Qef)dey,

(ef @def @ ef @ef) = {1® (Kin2 @ Iy2)[Iy2 @ vec(ef @ &7)]vec(ef @ dey)

= (I3 ®e ®e)(ef @ Iy)def,

(i @ef@def®er) = [{(1®Kiye)[vec(e; ® ef) ® 1]} @ IR Jvec(de; @ €f)
= (ef @&y @ In2)[1 @ {(Kin ® In)[Iy ® vec(ey)]Hvec(dey)

= (ef ®e; @In2)(Iy ® €f)def
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and

(e oe@e;@de]) = ({18 Kiys)vee(e] @ €} ©f) © 1]} @ IyJvec(de])

= (ef ®e; ®e; ®1In)dey,
as desired. (]

B.2 Univariate discrete mixtures of normals

B.2.1 Moments

The parameters §, »r and A of the two-component Gaussian mixture we consider in section

5 determine the higher order moments of € through the relationship
E(zi’|o) = AB(e/ st = Li@) + (1= N E(e/’ s = 2: 0),
where s; € {1,2} is a Bernoulli random variable with Pr(s; = 1) = A. Specifically,

E(ef|st = k; 0) = pi(0),
E(e?|se = k; 0) = 2 (0) + 032 (0),
E(ef%]st = k; 0) = 13 (0) + 3ui(0)a7 (o),

E(eiYse = k; 0) = pit(0) + 6132 (0) o3 (0) + 307 (0).

Given that E(ef|@) = 0 and E(g}?|@) = 1 by construction, straightforward algebra shows that
the skewness and kurtosis coefficients will be given by

SN = DAOP{A[2 + A(se — 1)] — 2} +3(5c — 1)]
w4 (1= N

E(cile) = —

and

3\ — 20%(3 + 6%)A% + (662 + 83H)A* — 95\° 4 354\
A+ (1 — X)x]?
+252(1 — A[B = (1= A6+ 62[2 — 3(1 — M)A]}]»
A+ (1= N\)x]?
+(1 — {3 = 02N — 1)2A[6 + 62(—1 + 37\%)]} 2
PENENYE ‘

E(eitlo) =
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B.2.2 Score with respect to o

Regarding the specific elements that appear in (9) and (10), we have

Oln fe},(60); 0i] _ 1 ,¢1it[5ft(9)—ﬂf(9i)] _ ,¢2it[5;§(9)—/~05(9¢)}
N AN {A% o) TN e }
L [ER(0) — Hi(e)] o [E5(0) — p3(ei)]
R e L e

where we have defined the posterior probabilities of shock ¢ being drawn from component k at
time ¢ as wyi = ¢[e(0); ui(0;), 012(0;)]/ fle(6); ;] to shorten the expressions (see Boldea and
Magnus (2009)).

As for the derivatives with respect to the shape parameters in (11), we have

Oln fle}(0);0,] Oln [f[e}(0):0,] Oln flef(0); 0]

erit(d)) = 851 ’ a%z ’ 8)\1 ’
with
ilebiel iy
‘ (51)\1 _ [1 + 51(1 - )\i)git] [git — MT(Q@)]
X {’IUMt <J>{2(Qi)[%i + (1 — )\z)%z] 1-— 512)\2(1 — )\7,) UT2(Qi) >
. < 8i(1 — \i)sg [0 (1 = Ni)eir] [e2e — M;(Qi)]) }
" 2e)la+ (1= X)sa]  1=8N(1-XN)  05%(e;) 7
Oln fle;,(0); 0] —  Ai(1—N)
D3 20+ (1= )l
<[ () o o i (e 1)
and
dln flek( B A{l—%+62[)\2(%—1)+%—2)\%]}
e = (14 )
(1 )\){1—%—1—52[)\2(%—1)—}—%—2)\%]})
ot 21 — 6%(1 — MAJMIL — 50) + 5]

[eit — pi(o)]A
+wm2[1 = 52(11 BEV\E X {61 + 3A(=1 + ») — 35]

—3 (N = D[Ae = 1) = 3] + 4(3e — 1) + €062 [N2(1 — 3¢) — 3¢+ 2)\x]}
oy it T H3(@0)](1 = A)
P90 — 62(1 — A)AJ2s¢
+(8[20%2%(1 — 2¢) + 0°X3 (3¢ — 1) — 25¢ + A(3 + 62)5c — 3A]}.

{eit(3e — 14 6%[A% — 20+ 2)r — A20)]

The second derivatives of the log-density with respect to the shape parameters can be derived
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using the chain rule for second derivatives from the expressions in Boldea and Magnus (2009),
who obtain them in terms of \, u}(g;) and o}*(g;) (k = 1,2). The precise expressions are

available on request.

C Monte Carlo results for a trivariate static model

In this appendix, we report finite sample results for a trivariate extension of our benchmark

DCGP 1, which we denote by DGP 1T. Specifically, we generate samples of size 1" from

Y1t 1 1 1/2 0 €1t
vy | =1 -1 ]+1 0 1 0 €54 (C2)
Y3t 0 0 0 1 €34

As for the shocks, we choose €}, ~ N(0,1), €5, ~ DMN(—.859,.386,1/5) and &5, ~
DM N (.859,.386,1/5), so that €3, and ej, follow discrete mixtures of two normals with kur-
tosis coefficients 4 and skewness coefficients equal to —.5 and .5, respectively.

Table C1 reports Monte Carlo rejection rates of the normality tests proposed in section
4.1 for samples of size T' = 250 (top panel) and T" = 1,000 (bottom panel). The first three
columns of those panels report rejection rates using asymptotic critical values, while the last
three columns show the bootstrap-based ones for T' = 250 and the warp-speed bootstrap-based
ones for T'=1,000. Once again, the normality tests tend to be oversized at the usual nominal
levels, especially for samples of length 250, while the standard bootstrap version of our tests is
much more reliable for both the third and fourth moment tests. More importantly, the null of
normality is correctly rejected a large number of times when it does not hold, even in samples
of length 250. Nevertheless, there is a moderate loss of power relative to Table 2, which may
reflect the need to estimate almost twice as many parameters as in the bivariate case. In larger
dimensions, one might expect a similar pattern, although in general, the main determinants
of the power of our normality test will be the non-normality of the structural shock under
consideration and how precisely identified it is.

Finally, in Table C2 we report the Monte Carlo rejection rates of the tests we have proposed in
section 4.2 under the null of independence for samples of size T' = 250 (left panel) and 7" = 1, 000
(right panel). As in Table C1, the first (last) three columns of those panels report rejection rates
using asymptotic (bootstrapped) critical values. As in the bivariate case (cf. Table 4), we can
see some small to moderate finite sample size distortion when 7" = 250, although in almost all
cases they are corrected by the bootstrap. Finite sample sizes improve considerably for samples

of length 1,000, as expected.
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Table C1: Monte Carlo size and power of normality tests: Trivariate static model.

T =250
Asymptotic critical Bootstrap (399 samples)
values critical values
Nominal size 10% 5% 1% 10% 5% 1%

Size (e}, normal)

Hj(e7y) 18.32 11.47 4.32 8.52 3.97 0.68
Hy(e7,) 17.58 10.30 4.50 8.67 4.22 1.02
Hs(e7,) & Hy(er,) 19.25 12.48 6.21 8.36 4.00 0.96
Power (¢35, DMN with negative skewness)
Hj(e3,) 81.73 76.37 63.77 73.58 65.53 45.71
Hy(e3,) 71.22 64.85 52.56 62.86 53.88 30.68
H3(es,) & Hu(el,) 85.61 81.26 71.70 77.09 68.14 42.89
Power (¢%, DMN with positive skewness)
H3(e3,) 82.25 77.25 64.50 73.94 65.78 45.16
Hy(es,) 71.33 64.97 53.06 63.22 53.85 29.73
H3(e3,) & Hy(es,) 86.00 81.67 71.81 76.97 67.89 41.66
T = 1,000
Asymptotic critical Warp-speed bootstrap
values critical values
Nominal size 10% 5% 1% 10% 5% 1%
Size (e}, normal)
Hj(e7,) 12.32 6.61 1.61 9.69 4.76 0.77
Hy(e7,) 12.22 6.56 1.84 9.71 4.71 0.93
H3(ey,) & Hy(el,) 12.73 6.91 2.10 9.38 4.83 0.81
Power (¢35, DMN with negative skewness)
Hs(e5,) 99.84 99.79 99.50 99.80 99.67 98.84
Hy(e3,) 99.32 98.84 97.06 98.75 97.80 92.56
H3(es,) & Hy(ey,) 99.95 99.91 99.83 99.89 99.83 99.39
Power (¢3, DMN with positive skewness)
Hj(e3,) 99.91 99.86 99.53 99.87 99.75 98.90
Hy(es,) 99.25 98.69 96.77 98.63 97.64 92.98
Hs(e%,) & Hy(el,) 99.98 99.95 99.86 99.94 99.89 99.42

Notes: Monte Carlo empirical rejection rates of normality tests; 20,000 replications. DGP 1T — Shocks:
€}, normal, and €3, and €3, discrete mixture of two normals. See Appendix C for details on the data
generating process. Asymptotic critical values: Hz(-) ~ x%, Hy(-) ~ x3 and H3(-) & Hy(-) ~ x3. We
describe the sampling procedure we use to implement the bootstrap in section 5.1.3.
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